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Abstract 

 

Cognitive control processes support purposeful, goal-directed behaviour in the 

presence of conflicting demands from our environment. Given advance information, this 

type of control can be engaged in anticipation of a change in behaviour. The cued-trials 

task-switching paradigm can temporally dissociate proactive and reactive cognitive control 

processes involved in switching between sets of abstract task rules. Typically, there is a 

performance cost for switch relative to repeat trials, which is attributed partly to proactive 

control processes required to prepare for a switch in task and partly to reactive control 

processes required to deal with between-task interference. Despite two decades of research 

into preparatory processes in task-switching, the cognitive processes and neural substrates 

that support proactive control remain underspecified. This thesis uses a model-based 

neuroscience approach to define the temporal and spatial characteristics of cognitive 

processes that contribute to proactive control in task-switching. Using converging evidence 

from ERPs, a novel multivariate pattern misclassification analysis of EEG data and 

cognitive modeling, we showed that a switch-specific preparation process is temporally and 

spatially distinct from more general task preparation for both switch and repeat trials. 

Consistent with a conflict control mechanism, we show that this switch-specific preparation 

process is linked to a right inferior frontal source and is related to upward adjustment of 

response caution in anticipation of more difficult switch trials. We also used fMRI- and 

DWI-based analyses to examine the neural basis of these cue-related adjustments in 

response caution, showing that distinct cortico-basal ganglia networks are associated with 

the ability to flexibly adjust response caution in anticipation of easy or difficult decisions, 

as well as intrinsic tendencies to set overall response caution high or low. We discuss 

implications of these findings for our understanding of the organization and timecourse of 

cognitive control mechanisms. 
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Chapter 1: The structure and organization of cognitive control processes 

 

1.1 The unity and diversity of cognitive control 

Decades of research have led to the development of comprehensive models of 

cognitive processes required to perform simple everyday tasks, such as word reading and 

object perception. However, the complex and constantly changing demands of our 

environment necessitate more than just these basic processes in order to achieve adaptive 

goal-directed behaviour (Miyake, Friedman, Emerson, Witzki, Howerter & Wager, 2000). 

Higher-level cognitive control processes are required to co-ordinate and control these 

lower-level cognitive processes, allowing for adaptation to changing environmental 

demands. More specifically, cognitive control processes enable us to develop plans for 

action, monitor their execution, and adjust or alter them to accommodate changes in the 

current context. While there is general agreement on the importance of these cognitive 

control processes for efficient everyday functioning, there is still a lack of agreement as to 

how these control processes operate, limiting our understanding of the way in which goal-

directed behaviour is achieved (Jurado & Rosselli, 2007). 

Early models of cognitive control proposed a unitary control centre, located 

somewhere in the prefrontal cortex, that is responsible for the co-ordination of all lower-

level processing. For example, Baddeley and Hitch’s (1974) influential model of working 

memory included a ‘central executive’ that co-ordinated processing in two lower-level sub-

systems: the visuospatial sketchpad and phonological rehearsal loop. Similarly, in Norman 

and Shallice’s (1986) model of information processing, a Supervisory Attentional System 

(SAS) controls planning and decision-making, as well as overcoming overlearned 

tendencies.  Therefore, in both these models, cognitive control was conceptualised as 



 16 

somewhat of a ‘homunculus’, somehow making all of the important strategy selections and 

decisions that lead to purposeful, goal-directed behaviour. 

It has since been argued that these models do not adequately explain the diversity 

of complex control strategies that contribute to goal-directed behaviour (Baddeley, 1996; 

Stuss, Shallice, Alexander & Picton, 1995). This is supported when examining individual 

differences across different tasks designed to measure cognitive control processes. For 

example, in both healthy young adults (e.g. Lehto, 1996) and brain damaged adults (e.g. 

Duncan, Johnson, Swales & Freer, 1997) scores across different cognitive control tasks are 

often not correlated. In addition, studies that have used exploratory factor analysis show 

that a number of separable factors, rather than a single factor, are needed to explain 

variance across a range of tasks (Burgess, Alderman, Evans, Emslie & Wilson, 1998). This 

separability of cognitive control processes is further supported by evidence from lesion 

studies (Stuss & Alexander, 2000; Stuss et al., 2002) and neuroimaging (Koechlin, 

Corrado, Pietrini & Grafman, 2000) indicating that different regions of the prefrontal cortex 

are associated with different cognitive control functions. It has also been suggested that 

neural models of cognitive control processes must also take into account connectivity 

between the prefrontal cortex and posterior as well as subcortical regions (Collette & van 

der Linden, 2002; Royall et al., 2002). For example, Miller and Cohen (2001) proposed that 

the PFC biases activation in other brain regions to ensure environmental input is converted 

to appropriate output. According to this model, the PFC is not involved in establishing 

mapping between input and output – it is instead involved in a more modulatory sense, co-

ordinating activity along pathways that are responsible for input-output processing. These 

models suggest that efficient functioning relies on the integrity of the whole brain, and not 

just the prefrontal cortex (Zelazo & Muller, 2002).  
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Other evidence indicates that while cognitive control can be fractionated into 

several distinct sub-components, there is also some commonality across these components 

(Miyake & Friedman, 2012). For example, Miyake et al. (2000) used a confirmatory factor 

analysis, which involved extracting shared variance amongst tasks selected to measure the 

same underlying cognitive control process. Three processes - shifting between cognitive 

sets, updating of working memory, and inhibition of prepotent responding - were clearly 

distinguishable, but still showed moderate correlations with each other. Similarly, Fournier-

Vicente, Larigauderie and Gaonac’h (2008) also used confirmatory factor analysis to show 

that five processes - verbal and visuospatial storage and processing, strategic retrieval from 

long term memory, selective attention and set shifting - were distinguishable, but also 

showed moderate relationships with each other. Therefore, while this approach provides 

evidence that cognitive control can be fractionated into distinct components, it also shows 

that there is still a common underlying mechanism or mechanisms, suggesting that 

cognitive control is characterized by both diversity and unity.  

While these approaches have furthered our understanding of the structure and 

organization of cognitive control processes, the nature of processes contributing to the 

unique and shared variance across these tasks remains underspecified. Miyake et al. (2000) 

argued that the source of the commonality across cognitive control tasks may be the ability 

to actively maintain task goals and context information and use this to bias lower-order 

cognitive processes. They further suggested that another process that might explain the 

commonality is an inhibitory mechanism that involves suppression of irrelevant 

information or cognitive sets.  Alternatively, Salthouse (1996; 2005) suggested that 

reasoning ability may underlie all areas of cognitive control. To better understand how 
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these cognitive control processes are both related and distinct, the mechanisms that underlie 

performance on tests of cognitive control must be further broken down. 

 

 

1.2 Proactive vs. reactive cognitive control processes 

 While historically, much of the investigation into cognitive control has focused on 

the structure and organization of these processes, recently attempts have been made to 

model their temporal characteristics. For example, Braver, Gray and Burgess (2007) 

proposed a dual mechanisms of control (DMC) model incorporating both proactive and 

reactive modes of cognitive control (see also Braver, 2012). Proactive control involves 

anticipatory goal maintenance processes that are activated in advance of an upcoming 

behaviorally relevant target. This preparatory mode of control biases attentional and motor 

systems towards the relevant target features and response modes, respectively. Therefore, 

this strategy involves maintaining goal information from the time that a goal is activated 

until the completion of that goal. The advantage of such a strategy is that plans can be 

continually adjusted while the goal is active in order to optimize behavioural outcomes. In 

contrast, a reactive mode of control involves only a transient representation of the task goal 

that is not maintained, followed by a goal reactivation process that is triggered in response 

to the target. Therefore, according to this framework, proactive control processes are 

engaged in anticipation of upcoming conflict or interference, while reactive control 

processes are engaged to resolve conflict upon its detection.  

It is argued that the bias towards either proactive or reactive cognitive control 

modes varies depending on task parameters. For example, Braver, Paxton, Locke and Barch 

(2009) used an AX-CPT task in which the letters “A”, “B”, “X” and “Y” were presented in 
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a continuous stream. Participants were required to make a target response to an “X”, but 

only if it followed an “A” (i.e., an AX trial). All other target combinations – AY, BX and 

BY – required a nontarget response. An index of context processing based on responses to 

the nontarget trials was used to determine the degree to which proactive control was 

engaged. In healthy young adults, adding a penalty incentive manipulation that shifted 

attention to target information produced a shift towards reactive control. In older adults, a 

shift towards proactive control was produced when adding behavioral strategy training 

involving instructions to focus on the classification of the cue. Therefore, it was shown that 

manipulating the task to induce shifts of attention to either the target or the cue produced 

biases towards more reactive or proactive response modes, respectively.  

In sum, cognitive control processes have received a great deal of interest in recent 

years, with particular attention paid to their organization and temporal properties. However, 

one of the challenges facing modeling of cognitive control is the difficulty of isolating key 

underlying processes within the complex and multidimensional processing required for 

higher-order control. To tease apart these processes, paradigms must be carefully designed, 

incorporating conditions that unconfound the operation of multiple control mechanisms. 

The development of such paradigms can therefore allow for the identification of specific 

and quantifiable control processes.  

 

 

1.3 Dissociating components of cognitive control using neuroimaging techniques 

The identification of core underlying processes of cognitive control is further 

informed through the use of neuroimaging methodologies. While behavioral data provides 

us with an insight into differences in processing demands between conditions, it only 



 20 

allows us to speculate about the nature of the processes that might be contributing to 

behavioural outcomes. Neuroimaging methods enable the study of the temporal and spatial 

dynamics of how these processes are implemented in the brain. The rapid development of 

new neuroimaging approaches together with the advent of innovative analysis methods 

have allowed for the examination of cognitive control processes from multiple perspectives, 

leading to more comprehensive and detailed models.  

The temporal characteristics of cognitive processes have been examined using the 

scalp-recorded electroencephalogram (EEG). This technique provides a window to the 

timecourse of these processes that would otherwise be unobservable in end-state 

behavioural measures. Activity time-locked to stimuli or responses can be used to 

decompose cognitive processes into constituent components. However, while the EEG has 

very high temporal resolution, it has limited spatial resolution, as the neural sources 

underlying scalp-recorded activity cannot be reliably inferred.  

In contrast, functional and structural magnetic resonance imaging (MRI) provides 

the high spatial resolution required to be able to isolate the brain regions underlying 

cognitive processes. Functional magnetic resonance imaging (fMRI) measures 

haemodynamic changes associated with brain activation, providing spatial resolution in the 

order of millimeters. However, these haemodynamic changes are very slow, and so fMRI 

lacks the temporal resolution required to decompose brain activation patterns over time. 

Structural MRI measures such as diffusion-weighted imaging (DWI) indicate the structural 

integrity of pathways within the brain. Taking advantage of individual variability in these 

measures, it has been possible to examine the relationship between the integrity of brain 

structures and both functional brain measures (e.g. EEG, fMRI) and behavioural outcomes. 
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Therefore, EEG and MRI approaches provide complementary measures that can contribute 

to the development of models of cognitive control processes. 

More recent approaches have combined formal cognitive modeling of behavioral 

data with neuroimaging in an approach referred to as ‘model-based neuroscience’ 

(Forstmann, Wagenmakers, Eichele, Brown & Serences, 2011b). Forstmann et al. argue 

that theoretical models can benefit from a reciprocal relationship between cognitive 

modeling and neuroimaging, as parameters derived from cognitive models can guide the 

interpretation of neuroimaging data, while neuroimaging data can also be used to constrain 

cognitive models. This approach also limits speculation about the processes associated with 

patterns of activation from functional measures or differences in structural brain measures, 

instead allowing for more specific inferences about brain-behaviour linkages. 

 

 

1.4 Investigating the components of preparatory control in task-switching 

In this thesis, we used the task-switching paradigm to examine the organization 

and timecourse of cognitive control processes. In this paradigm, participants alternate 

between two or more simple categorization tasks based on a predictable task sequence (e.g. 

task A, task A, task B, task B; Rogers & Monsell, 1995) or informative task cues presented 

in a randomized order (e.g. Meiran, Chorev & Sapir, 2000). Switching between tasks, 

compared to repeating the same task, is associated with a performance cost, or ‘switch 

cost’. Behavioral studies (see Kiesel et al., 2010, for a review) suggest that at least part of 

this cost may be attributed to a higher-order cognitive control mechanism engaged to 

‘reconfigure’ the cognitive system and enforce the transition to the new task, and that this 
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reconfiguration process can be partially completed proactively, that is, in anticipation of 

target onset (e.g., Rogers & Monsell, 1995).  

However, while there is general agreement that preparation to switch tasks 

requires active reconfiguration, the nature of this process or processes remains unclear. In 

particular, it remains unclear whether switching between tasks involves preparatory control 

that is exclusively engaged on switch trials or stronger engagement of preparatory 

processes also carried out in anticipation of repeat trials. Models that posit the existence of 

switch-specific preparatory control suggest that this preparation involves both inhibition of 

irrelevant task information and retrieval of the relevant task information from working 

memory (e.g. Rubinstein, Meyer & Evans, 2001). The cued-trials variant of the task-

switching paradigm used in this thesis allows proactive control processes contributing to 

switch and repeat task preparation to be clearly isolated from reactive control processes and 

differentiated. Therefore, this paradigm appears particularly suited to investigating the 

organization and temporal properties of cognitive control processes. 

 

 

1.5 Overview of the thesis 

This thesis aims to define the processes involved in preparation for a switch in 

task, with two primary objectives: a) To determine whether switching between tasks entails 

qualitatively distinct preparation specifically related to the signal to switch (which we refer 

to herein as switch-specific preparation, for simplicity), and b) To define the nature of 

switch-specific preparation. In isolating and defining switch-specific component(s) of 

preparation, we can further inform debates about the organization and temporal dynamics 

of cognitive control. 
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Chapters 2 and 3 provide more detailed background to topics relevant to this 

research. Chapter 2 presents an overview of the behavioural and neuroimaging 

methodologies used in this thesis and how they have been applied previously to investigate 

cognitive control processes. Chapter 3 gives a review of key behavioural and neuroimaging 

task-switching studies that have contributed to the development of current theories on the 

nature of cognitive control processes elicited in this paradigm. It is concluded that while 

behavioural and neuroimaging evidence have added to our understanding of the temporal 

and spatial dynamics of preparation for a switch in task, the specific mechanisms by which 

switch preparation occurs have still eluded us.  

We developed a new paradigm that was designed to distinguish switch-specific 

preparation from task updating and task readiness processes and combined this with an 

approach that used converging evidence across multiple methodologies. This allowed us to 

take advantage of the strengths of each methodology to build a more comprehensive picture 

of the nature of preparation for a switch in task. All experimental chapters have used this 

task-switching paradigm and so the Methods sections show some overlap. In Chapter 4 

(Karayanidis et al., 2009), we combined ERPs with cognitive modeling of behavioural data 

and found evidence for switch-specific preparation that produces a behavioural advantage 

even when the upcoming task is not specified. Chapter 5 (Mansfield, Karayanidis & Cohen, 

2012) presents a multivariate pattern analysis of EEG that provides converging evidence for 

switch-specific preparation that can be temporally and spatially dissociated from task 

readiness processes on both switch and repeat trials. The fact that this switching process 

was elicited even without foreknowledge of an upcoming task and was associated with a 

generator over right inferior frontal cortex suggested that it may reflect suppression of the 

previous task. 
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However, we also found evidence that response caution was increased in 

anticipation of a more difficult switch trial, suggesting an alternative explanation for the 

switch-specific component of preparation (Karayanidis et al., 2009; Chapter 4). In Chapter 

7 (Mansfield, Karayanidis, Jamadar, Heathcote & Forstmann, 2011), we use fMRI to 

further examine the nature of these adjustments, finding a large overlap with networks 

shown to adjust response caution in response to speed vs. accuracy instructions in two-

choice decision-making. In particular, we showed that increasing response caution was 

associated with activation in the STN, an area thought to slow the output of the basal 

ganglia under conditions of increased conflict. Therefore, we suggested that switch-specific 

preparation may involve a conflict control mechanism. However, using a combination of 

structural measures from diffusion-weighted MRI and functional measures from ERPs in 

Chapter 8, we showed that the striatum, rather than the STN, may carry out this anticipatory 

change in threshold. We also showed that networks associated with individual differences 

in preferences to adopt an overall more risky or more cautious strategy overlap with those 

associated with trial-by-trial adjustment of response caution, further informing neural 

models of the speed-accuracy tradeoff. Chapter 9 discusses the implications of the findings 

presented in this thesis as well as future directions. Taken together, these findings highlight 

the value of using paradigms that are designed to target specific cognitive control 

processes, along with an approach that takes advantage of the strengths of a number of 

neuroimaging modalities. 
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Chapter 2: Inferring Cognitive Processes from Behavioural, Electrophysiological, 

Haemodynamic and Structural Measures 

 

As noted in the previous chapter, combining evidence across multiple behavioural 

and neuroimaging methodologies has the potential to clarify and extend on current models 

of cognitive control functions, by providing a multidimensional picture of these processes. 

However, to understand how each methodology contributes to this picture, the strengths 

and limitations of each must first be considered. In this Chapter, I examine the basis and 

assumptions of each of the methodologies used in this thesis. This is followed by examples 

of how these methodologies have previously been applied to uncover the spatiotemporal 

characteristics of cognitive control processes. 

 

 

2.1 Behavioural measures and cognitive modeling 

Measurement of overt behaviour, including the speed and accuracy of responding, 

allows inferences to be made about the duration of cognitive processes, the conditions 

under which certain processes are activated, and the effects of interference and task 

difficulty on task performance (Coles, Smid, Scheffers & Otten, 1995). Behavioral models 

provide a framework for the timing and sequencing of mental processes, allowing for an 

examination of unobservable cognitive processes on the basis of observable behavioural 

data. For example, the Donders method (1969) involves subtracting an experimental 

condition from a baseline condition with the assumption being that these two conditions 

differ on only a single process. The difference in RT between these two conditions is 

assumed to reflect the duration of this process. For example, when subtracting RT from 
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simple and choice response conditions, it is assumed that the sensory and motor 

components common to the two conditions would cancel out, and the difference would 

reflect the time consumed by the choice process. Donders therefore conceptualised RT as a 

composite measure of multiple serial processes. However, while this model represented an 

elegant way of indentifying differential processing between two conditions, it has been 

criticized for ignoring the possibility that the addition of a new process in an experimental 

condition may change the nature of the existing processes (Coles et al., 1995). Therefore, a 

difference in reaction time between conditions cannot be assumed to arise solely from the 

addition of a single process that is related to the additional task requirement.  

Sternberg’s (1969) additive factors logic model assumes that differences in 

behavioural performance between experimental conditions arise from differences in the 

duration of one or more processing stages. Like the Donders method, Sternberg’s model 

assumes that processes can only occur serially. However, the duration of these processing 

stages is assumed to be related to the experimental manipulation of ‘factors’, for example 

stimulus quality and stimulus-response compatibility. The duration of these processes can 

therefore be determined using factorial designs, with main effects indicating that factors 

affect distinct processes (i.e., additive processes), and interaction effects indicating that 

multiple factors may influence the same process. However, again, the assumptions behind 

this model are not consistently met. Differences between conditions may involve more than 

simply a change in the duration of one or more processing stages, as there may also be 

accompanying changes in other processes that are presumed to be ‘unaffected’. In addition, 

the model relies heavily on the assumption of a single instance of information transfer 

between serial stages of processing. However, it has been shown that when a stimulus 

display consists of more than one response-signifying element, this assumption is violated. 
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For example, using an Erikson flanker task in which target size, stimulus-response 

compatibility and flanker congruence were varied, Ridderinkhof, van der Molen and 

Bashore (1995) found that two factors could influence the same stage of processing. Thus, 

both of these early models rest on strict assumptions that are not consistently met, 

presenting difficulties for unambiguously interpreting changes in overt behaviour.  

Importantly, these behavioural models infer underlying, unobservable processes on 

the basis of end-state measures, rather than directly measuring the underlying processes 

themselves. Formal cognitive models address this problem by isolating and quantifying 

latent cognitive processes that contribute to end-state performance. These models derive 

parameter estimates that represent latent measures of processes that contribute to explicit 

performance measures (i.e., RT and accuracy). Numerous cognitive models have been 

developed with the aim of directly measuring components of cognitive processing, 

including selective attention (e.g. Nosofsky, 1986), memory storage and retrieval (e.g. 

Jacoby, 1991; Shiffrin & Steyvers, 1997), and response caution and bias (e.g. Brown & 

Heathcote, 2008). These models vary in their specificity, with some targeting processes that 

are exclusive to a particular domain and others targeting more general processes that apply 

across several domains (see Table 1.1 for examples of these models).  
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Table 1.1: Examples of formal cognitive models and the domains to which they have been applied 
(Adapted from Forstmann, Wagenmakers, Eichele, Brown & Serences, 2011b). 

 

Model Domain 

ACT-R (Anderson & Lebiere, 1998) General 

DDM (Ratcliff & McKoon, 2008) Two-choice decision making  

GCM (Nosofsky, 1986) Categorization 

LBA (Brown & Heathcote, 2008) Two-choice decision making 

MPT (Batchelder & Riefer, 1980) General 

PDP (Jacoby, 1991) Memory 

REM (Shiffrin & Steyvers, 1997) Memory 

  

 

The diffusion model (e.g. Ratcliff, 1978) was developed to derive estimates of 

decision and nondecision components of responding in two-choice decision making 

paradigms. Figure 2.1 presents a conceptual illustration of the diffusion process using an 

example from the lexical decision task. Two response thresholds (corresponding to correct 

and incorrect responses, respectively) represent the criterion amount of response evidence 

required to make a response decision. Evidence for each response option begins to 

accumulate stochastically from a start point that is set between these two response 

thresholds and a decision is made when evidence has accumulated to a point where one of 

the response thresholds is reached. The decision time is determined by both response 

threshold, the amount of evidence that is required for a response to be selected, and drift 

rate, the efficiency of evidence accumulation. The remainder of RT is subsumed by 

nondecision time, which includes processes that are not directly related to the decision 

process, such as stimulus encoding and response execution.  
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Figure 2.1: Illustration of the diffusion process as applied to a lexical decision task (Adapted from 
Wagenmakers, van der Maas & Grasman, 2007). 

 

 

Ratcliff and McKoon (2008) explain how the diffusion model can account for the 

effects of various experimental manipulations on two-choice decision making. This study 

used a simple motion discrimination task in which participants are asked to judge the 

primary direction of movement (right or left) in an array of dots. Changes in RT and 

accuracy associated with changes in the emphasis of task instructions (either to respond 

more quickly or more accurately) were entirely accommodated by shifts in response 

threshold. In contrast, changes in behaviour according to the difficulty of discrimination 

(i.e., the proportion of dots moving in a single direction) could be explained by differences 

in drift rate. Therefore, the model was able to provide a fine-grained account of the 
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unobservable cognitive processes contributing to condition-related differences in 

observable performance.  

To fit the diffusion model, the full distribution of both correct and incorrect 

responses is required. This presents a problem for paradigms in which error rates are very 

low, as this does not provide an accurate enough estimate of the response time distribution 

for error trails. Recently, Wagenmakers, van der Maas and Grasman (2007) formulated a 

simplified version of the Ratcliff (1978) diffusion model, known as the EZ-diffusion 

model. This model does not attempt to account for the full distribution of error RTs and 

focuses on extracting the most psychologically relevant parameters of the diffusion model – 

response threshold, drift rate and nondecision time. In this thesis, we apply a slightly 

modified version of this model, the EZ2-diffusion model (Grasman, Wagenmakers & van 

der Maas, 2009) to the cued-trials task-switching paradigm, to decompose the component 

processes contributing to performance on this task. 

In sum, cognitive modeling offers insight into the nature of processes that contribute 

to a behavioural outcome. However, it offers only theoretically plausible explanations 

about how these processes are organized temporally. Electrophysiological techniques allow 

direct measurements of the timecourse of differences in processing, and can therefore show 

whether processes are carried out proactively, based on internal goals or plans, or 

reactively, based on external stimuli. When used in conjunction with formal cognitive 

modeling, electrophysiology has the potential to enhance our understanding of how 

cognitive processes are strategically controlled in the service of behavioural goals. 
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2.2 Electrophysiology 

 

2.2.1 Event-related potentials 

Event-related potentials (ERPs) are scalp-recorded voltage changes that show the 

timecourse of neural activity time-locked to stimuli or responses, with millisecond 

resolution. ERPs are derived from the ongoing EEG by averaging over multiple instances 

of the same stimulus type. By using signal averaging procedures, electrical activity 

associated with sensory or cognitive processes linked to that stimulus type are retained, 

while EEG activity that is not time-locked to this stimulus (i.e., noise) is averaged out 

(Coles & Rugg, 1995). The resulting ERP waveform consists of a time-varying series of 

deflections that can be mapped to specific sensory and cognitive processes. 

The high temporal resolution of ERPs offers one main advantage – the ability to 

determine the effect of specific experimental manipulations at different stages of processing 

(Luck, 2005). However, while ERPs offer precise temporal resolution, their spatial 

resolution is limited. Scalp-recorded ERPs represent the summation of activity of large 

neuronal populations that may be anatomically distinct or distributed across a large number 

of locations within the brain (Picton et al., 2000). It follows that ERP activity recorded at a 

particular scalp location may be produced by an infinite number of generator configurations 

and is therefore not necessarily related to neuronal activity directly below that location 

(Coles & Rugg, 1995). A further issue that limits the spatial resolution of ERPs is volume 

conduction, which refers to the fact that electrical activity spreads as it travels through the 

brain, leading to activity being detected at scalp locations far from its original source (Luck, 

2005). For these reasons, ERPs cannot be reliably mapped to specific neural generators.   
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Variations in the timing and engagement of cognitive processes across experimental 

conditions can be measured in the ERP waveform by examining latency and amplitude 

measures, respectively (see Figure 2.2a). Latency is measured as the time delay (in ms) 

between stimulus onset and the onset or peak of an ERP deflection. Amplitude is measured 

as the maximum or average amplitude (in µV) of a deflection within a pre-defined time-

window of interest. For example, an ERP peak that differs only in amplitude between two 

conditions indicates a difference in the extent of engagement of this process (Otten & 

Rugg, 2005). Inferences about the functional equivalence of processes can be inferred on 

the basis of scalp topography (see Figure 2.2b). While ERPs do not offer high spatial 

resolution, a difference between conditions in the scalp topography of an effect implies that 

these conditions are associated with distinct configurations of underlying neural generators, 

suggesting that these processes are functionally distinct (Otten & Rugg). 

 

 

Figure 2.2: A: Hypothetical example of an ERP waveform recorded at the midline parietal site Pz 

(negative voltage is plotted above baseline). B: Hypothetical scalp topography. 
 

 

 

A B 
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However, it is also important to note that ERP peaks overlap in time, such that 

voltage recorded at a given time point reflects the summation of many of these overlapping 

peaks (Luck, 2005). This can make it very difficult to determine which ERP peak is being 

modulated by an experimental manipulation. ERP peaks can be distinguished from ERP 

‘components’ that are reliably elicited under specific conditions and show a characteristic 

scalp distribution (Donchin, Ritter & McCallum, 1978). These components can therefore be 

used as markers for cognitive processes elicited under these conditions (Otten & Rugg, 

2005). In paradigms targeting cognitive control, two widely studied components are the 

contingent negative variation (CNV), a stimulus-preceding negative component, and the 

P300, a stimulus-elicited positive component. 

 

2.2.1.1 The CNV 

The CNV is typically elicited in an S1-S2 paradigm, where the first stimulus (S1) 

predicts the onset of a second stimulus (S2) which requires a motor response (Birbaumer, 

Elbert, Canavan & Rockstroh, 1990). In the interval between S1 and S2, a slow negative 

component is elicited over fronto-central sites, showing a ramp-like morphology that 

reaches its maximum at S2 onset. Therefore, the CNV has been interpreted as an 

‘expectancy’ component. The fact that it is also elicited even when a motor response is not 

required to S2 suggests that this expectancy is not entirely motor-related but may instead 

represent a more general anticipatory reallocation of attention (Birbaumer et al.). The CNV 

is also affected by experimental manipulations of response certainty. For example, a larger 

CNV is elicited when S2 involves a choice rather than a simple motor response (Kakigi, 

Matsude & Ueda, 1985). In addition, a larger CNV is also found when the motor response 

required is specified at S2 onset, relative to when it is specified at S1 onset (Van Boxtel & 
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Brunia, 1994), suggesting that this component is affected by the predictability of the 

response required to S2.  

 

2.2.1.2 The P300 

The P300 is a stimulus-elicited positive component that occurs approximately 300-

400 ms after stimulus onset. This component is typically elicited in ‘oddball’ paradigms, in 

which participants respond to a target stimulus type that is less frequent than a standard or 

non-target stimulus type. In this task, the amplitude of the P300 depends on the probability 

of the attended stimulus type, with higher amplitudes elicited to rarer stimulus 

presentations. In contrast, the latency of the component is affected by the difficulty of the 

discrimination between the two stimulus types, with more difficult discriminations leading 

to longer latencies. A dominant explanation of the functional significance of the P300 

component continues to be that it reflects a kind of context updating in response to relevant 

incoming information from the environment (Donchin & Coles, 1988, but see also 

Verleger, Jaskowski & Wascher, 2005). 

 

2.2.2 Oscillatory activity 

Another technique that is used to examine processes leading up to a behavioural 

outcome is EEG spectral power analysis. This technique measures the oscillatory properties 

of neuronal activity, which reflects rhythmic changes in the depolarization of membrane 

potentials of large neuronal populations. Neurons oscillating in synchrony are associated 

with more effective information transfer than neurons not oscillating in synchrony, as 

rhythmic synchronization between neurons results in strong input to target cells (Klimesch, 

Sauseng & Hanslmayr, 2007; Ward & Doesburg, 2009). Oscillations in EEG are 
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characterized by their frequency (cycles per second, Hz) and amplitude (how far from a 

starting point the oscillation reaches in the peak of its cycle).  

The EEG signal can be decomposed into several frequency bands, ranging from 0 to 

80 Hz. Within each frequency band, changes in neural ‘activity’ are measured by changes 

in oscillation amplitude. Spectral power is an index of amplitude and is thought to represent 

the amount of energy in an oscillation (Ward, 2003), with increased power reflecting 

increased synchrony of oscillations. Spectral power can be obtained by transforming the 

EEG signal into the frequency domain using the Fourier transform. However, this technique 

does not inform on changes in the spectral power within each frequency band over time. 

Temporal information can be obtained using a wavelet transformation, which involves the 

original EEG signal being convolved with a scaled version of a mother wavelet function. 

This produces a wavelet with coefficients that quantify the similarity between the original 

EEG time series and the mother wavelet function (Herrmann, Grigutsch & Busch, 2005). 

Therefore, wavelet transformation provides time-varying measures of power within each 

frequency band.  

One frequency band that appears to be closely related to higher-order cognitive 

control functions is alpha (8-12 Hz). This rhythm has been shown to be associated with top-

down attentional control processes, in particular the suppression of distracting or 

conflicting information (Cooper, Burgess, Croft & Gruzelier, 2006; Cooper, Croft, 

Dominey, Burgess and Gruzelier, 2003; Klimesch et al., 2007; Min & Herrmann, 2007; 

Min & Park, 2010). For example, Cooper et al. (2003) found increased alpha activity on a 

task that involved answering questions about a sequence of imagined stimuli, compared to a 

task which involved answering questions about presented stimuli. As internally-directed 

attention requires more effortful suppression of distracting information than does 
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externally-directed attention, it was argued that this increased activity in the alpha band 

reflects inhibition. Evidence has also shown alpha activity associated with anticipatory 

inhibition of irrelevant input. For example, Min and Park (2010) used a paradigm in which 

participants indicated whether the dimension of a target feature (i.e., shape or color) was 

the same on two successive trials. Within the pre-target interval, increased alpha power was 

observed over posterior sites for the shape relative to the color task. As the shape task 

showed both slower reaction times and decreased accuracy relative to the color task, this 

increase in alpha power was interpreted as indexing increased top-down preparation to 

suppress the salience of the target color. Thus, alpha activity appears to be closely linked to 

an inhibitory control mechanism. 

 

2.2.3 Electrophysiology: Conclusions 

As discussed in the previous two sections, electrophysiological measures provide 

information about the timecourse and relative activation of processes leading up to a 

behavioural response. Following decades of research, commonly observed components in 

ERP waveforms and frequency bands within the EEG can now be confidently related to 

specific cognitive processes. Therefore, these measures have given us extensive insight into 

both the characteristics and temporal dynamics of the cognitive processes that lead to a 

behavioural outcome. However, these techniques do not allow for reliable localization of 

the neural sources associated with these processes. Electrophysiological recordings are also 

more sensitive to activity occurring at the cortical surface than to activity originating from 

sources deep within the brain. Further, some subcortical structures do not show the open 

field configuration that is necessary to produce activity at the scalp (Horovitz, Rossion, 

Skudlarski & Gore, 2004). Imaging techniques such as functional magnetic resonance 
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imaging (fMRI) provide high spatial resolution images that allow us to localize the neural 

regions and networks underlying cognitive processes.  

 

 

2.3 Magnetic resonance imaging measures 

 

2.3.1 Functional MRI 

Magnetic resonance imaging (MRI) produces images of the brain by measuring 

changes to the spins of nuclei within various tissue types. As hydrogen is abundant across 

many different tissue types, most MRI techniques measure spins of hydrogen nuclei 

(Huettel, Song & McCarthy, 2009). The magnetic resonance (MR) signal is produced when 

nuclei spins are disturbed from a state of equilibrium by the introduction of radiofrequency 

pulse, which bombards the spin system with electromagnetic waves so that some spins 

change from low-energy to high-energy states. When the radiofrequency pulse is turned off, 

the high-energy spins fall back to a low-energy state in order to restore equilibrium. The 

energy that is emitted as these nuclei return to equilibrium is what constitutes the MR 

signal. The decay of this signal differs across tissue types, and is described by three time 

constants – T1, T2, and T2*. Each of these time constants gives rise to a different type of 

image. In fMRI, both T1- and T2*-weighted images are commonly acquired. T1-weighting 

produces anatomical images in which white matter shows the highest signal, grey matter 

shows intermediate signal and cerebrospinal fluid shows little to no signal. T2*-weighted 

images are sensitive to the amount of deoxygenated haemoglobin (dHb) in blood, which 

fluctuates within the brain due to the metabolic demands of neurons. These changes in dHb 
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form the basis of the blood oxygenation level dependent (BOLD) fMRI, providing an 

indirect measure of activation within neural regions. 

The change in signal produced as a result of changes in metabolic demands within 

the brain is known as the BOLD haemodynamic response. When neurons become active, 

the vascular system supplies more oxygenated haemoglobin (Hb) to the activated regions 

than is required. This excess Hb flushes out dHb from capillaries supporting the activated 

regions, which produces an increase in signal in T2*-weighted images. Therefore, a signal 

increase in T2*-weighted images corresponds with an increase in oxygen consumption. 

These changes are measured within voxels that typically range in size from 1 x 1 x 1mm to 

5 x 5 x 5mm. However, despite spatial resolution in the order of millimetres, the temporal 

resolution of fMRI is limited by the sluggishness of the haemodynamic response. While 

neuronal responses occur within tens of milliseconds of presentation of a stimulus, the 

haemodynamic response does not increase above baseline until around 2 seconds post-

stimulus, reaching a peak at around 5 seconds post-stimulus. Thus, the haemodynamic 

response shows a considerable lag relative to stimulus onset, and so fMRI can only 

distinguish between responses to events that are separated by a few seconds. 

 

2.3.1.1 Frontal, parietal and subcortical activation associated with higher-order cognitive 

control 

The high spatial resolution of fMRI has provided valuable information about the 

neural underpinnings of cognitive control, showing that these functions are at least partly 

subserved by a fronto-parietal network that incorporates dorsal and inferior portions of the 

prefrontal cortex, as well as posterior parietal regions. In particular, the dorsolateral 

prefrontal cortex (DLPFC) has been shown to play a central role in cognitive control. 
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Activation in DLPFC is consistently observed when task-relevant information needs to be 

maintained in the service of behavioural goals (Badre & Wagner, 2004; Hester, Murphy, 

Foxe, Foxe, Javitt & Garavan, 2004; Fassbender, Foxe & Garavan, 2006; Liston, Mathalon, 

Hare, Davidson & Casey, 2006). For example, the DLPFC showed greater activation for 

colour-naming than word-reading in a Stroop task (MacDonald, Cohen, Stenger & Carter, 

2000), suggesting that this region is particularly involved in the context-dependent selection 

of task-relevant information, as well as the suppression of distracting input. The DLPFC 

may carry out these functions by providing a goal-activation signal that biases activation 

levels of task-relevant rules ‘held’ in posterior parietal cortex (PPC; Andersen, 1987; 

Andersen & Bueno, 2002). The distinction between top-down attentional control in DLPFC 

and rule activation in PPC was supported in Bunge et al. (2002), who showed that the 

requirement to select amongst available responses was associated with activation in 

DLPFC, while the requirement to maintain representations of responses was associated 

with activation in PPC. Further supporting this model, activation in a DLPFC/PPC network 

has been found in paradigms requiring top-down selection or maintenance of appropriate 

response sets (Fassbender et al., 2006; Hester, D’Esposito, Cole & Garavan, 2007).  

In contrast, the inferior frontal cortex (IFC) has been shown to play a particularly 

important role in inhibition (Aron, Behrens, Smith, Frank & Poldrack, 2007; Aron & 

Poldrack, 2006). The IFC, and especially the right IFC, is frequently activated in tasks that 

require response inhibition, as such as the go/no-go task and stop-signal task, as well as in 

tasks that require inhibition of retrieval from working memory (Aron, Robbins & Poldrack, 

2004). It has also been shown that lesions of the right IFC (Aron, Fletcher, Bullmore, 

Sahakian & Robbins, 2003), as well as transcranial magnetic stimulation (TMS) over this 

area (Chambers et al., 2007) impairs performance on the stop-signal task. It is thought that 



 40 

the IFC suppresses responses via the hyperdirect cortico-basal ganglia network (Nambu, 

Tokuno & Takada, 2002). According to this model, the IFC provides input to the 

subthalamic nucleus (STN), which then provides excitatory input to the globus pallidus, 

resulting in a blocking of response initiation (Aron et al., 2007; Aron & Poldrack, 2006).  

In sum, current evidence suggests that a DLPFC/PPC network is involved in 

selecting and maintaining task-relevant information while also suppressing conflicting 

information. In contrast, the IFC appears to be specifically involved in inhibiting responses 

or cognitive sets in the presence of conflict, possibly via a cortico-basal ganglia hyperdirect 

pathway. Functional MRI has provided an invaluable insight into the neural regions 

underlying higher-order cognitive processes. However, the existence of networks that 

support interaction between these regions cannot be directly inferred on the basis of 

haemodynamic responses. Diffusion-weighted MRI has provided a new tool to analyse the 

organization of white matter microstructure that supports communication between brain 

regions. Therefore, this technique allows for stronger inferences to be made about the 

existence of neural networks supporting top-down control, on the basis of white matter 

architecture. 

 

2.3.2 Diffusion-weighted imaging 

Diffusion-weighted MRI measures the diffusion properties of water molecules, 

which varies across different types of neural tissue. When no restriction is placed on the 

diffusion of water molecules (i.e., within a free medium), they diffuse randomly, in a 

process known as isotropic diffusion (see Figure 2.3). However, when restrictions are 

imposed on the directionality of the diffusion process, such as those imposed by the 

presence of cell membranes or fibers, this results in a process known as anisotropic 
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diffusion. Anisotropic diffusion occurs in nerve fibers making up white matter pathways 

within the brain. However, the biophysical underpinnings of anisotropic diffusion within 

these tracts are still not fully understood. While anisotropy in these regions was initially 

attributed to increased myelination of nerve fibers, anisotropy has also been shown prior to 

the myelination of axons, although to a lesser extent (e.g. Takeda et al., 1997; Neil et al., 

1998), suggesting that myelination of membranes is not necessary to produce diffusion 

anisotropy. More recent evidence suggests that anisotropy is associated with homogeneity 

in white matter structures, in particular the spatial organization of axonal membranes 

(Basser & Özarslan, 2009; Le Bihan & Johansen-Berg, 2012).  

 

 

  

Figure 2.3: Diffusion trajectories and corresponding ellipsoid shapes for isotropic diffusion 
(left) and anisotropic diffusion (right; Figure adapted from Mukherjee, Berman, Chung, 
Hess & Henry, 2008). 
 

 

 

MRI sequences can be made sensitive to diffusion by adding in magnetic field 

gradients. These gradients label space along a single direction and measure the 
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displacement of hydrogen nuclei along this direction over a finite interval. This 

displacement is calculated by measuring the change in phase that is brought about between 

a first gradient pulse and a second gradient pulse. This displacement produces a signal 

attenuation that indicates the relative displacement of nuclei, such that high signal 

attenuation in the direction of the gradient indicates the presence of more anisotropic 

diffusion. For each voxel in the resulting images, a diffusion tensor is fit, consisting of a 3 x 

3 matrix that fully describes diffusion in 3D space. The principal direction of diffusion can 

be computed by deriving the eigenvectors and eigenvalues of the tensor. Eigenvalues are 

ordered λ1 ≥ λ2 ≥ λ3 , each of which corresponds to one eigenvector. The eigenvector 

associated with the highest eigenvalue (λ1) is the main direction of diffusion. If this 

eigenvalue is significantly different from the other eigenvalues, then diffusion is anisotropic 

and is represented as a cigar-shaped ellipsoid in 3D space (see Figure 2.3). In contrast, if all 

eigenvalues are similar, then diffusion in isotropic, and represented by a sphere shape. 

Fractional anisotropy (FA) is the most commonly used measure of structural integrity of 

white matter and is calculated on the basis of all three eigenvalues. FA values range from 0 

to 1, with values approaching 1 indicating increased directionality of diffusion (independent 

of diffusion rate). 

However, it is important to point out diffusion-weighted MRI measures only one 

thing – the displacement of hydrogen. The signal attenuation produced by this displacement 

is sensitive to not only barriers imposed by microstructure (e.g. cell membranes, 

microtubules) but also a range of other factors, including temperature and viscosity (Jones, 

Knösche & Turner, 2013). As our understanding of the true biophysical basis of the signal 

attenuation is still in development, we interpret changes in FA as reflecting changes in 

‘structural integrity’, in line with current terminology.  
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2.3.2.1 White matter connectivity in networks subserving higher-order cognitive control 

Diffusion MRI has largely been used to examine changes in white matter 

microstructure across the lifespan, as well as differences in white matter between 

individuals with various psychopathological disorders and healthy controls. Relatively few 

studies have used this technique to examine the structural correlates of individual 

differences in cognitive control in normative samples. These studies have shown that 

measures derived from diffusion MRI can be used to provide corroborating evidence for 

neural network models derived on the basis of fMRI data. For example, Aron et al. (2007) 

showed increased activation in right IFC, pre-SMA and STN for individuals who showed 

greater conflict-induced slowing on a stop-signal paradigm.  Using diffusion MRI, it was 

shown that these three regions were connected in a ‘triangular’ network of white matter 

pathways, further supporting the notion that response slowing is implemented via a cortico-

basal ganglia hyperdirect pathway (see also Section 2.3.1.1).  

Other studies have shown that measures of structural integrity are correlated with 

measures of brain function, as well as behavioral outcomes. For example, Forstmann et al. 

(2008b) found that individuals who showed more proficient response inhibition on a Simon 

task showed both increased fMRI activation, as well as increased FA in the right IFC. In 

addition, the extent of fMRI activation in the right IFC showed a positive correlation with 

FA within this region. Using the Eriksen flanker task, Westlye, Walhovd, Bjørnerud, Due-

Tønnessen and Fjell (2009) showed that structural integrity within the cingulate is related to 

the error-related negativity, an ERP index of conflict-monitoring. In another study 

examining the structural and functional correlates of conflict-monitoring, Cohen (2011) 

showed that theta band activity during errors in a modified Simon task was correlated with 
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structural integrity within the ventral striatum and IFC.  Therefore, while this technique is 

still developing, the available evidence indicates that measures derived from diffusion MRI 

closely correspond with both individual differences in functional measures (e.g. fMRI, 

ERPs, EEG oscillations) as well as behavioral outcome measures within normative 

samples. Thus, it appears that diffusion MRI can further our understanding of the way in 

which brain regions shown to be important for cognitive control form distributed networks 

that enable efficient information transfer. 

 

 

2.4 Bringing it all together: Using multiple methodologies to inform models of cognitive 

control 

As outlined in Section 2.1, observable behavioral measures (RT and accuracy) 

represent the end-point of a number of transient cognitive processes. Therefore, models of 

cognitive control based purely on these measures can only speculate about the underlying 

processes that contribute to a behavioral outcome. Formal cognitive modeling approaches 

overcome this limitation by extracting a number of latent processes that contribute to these 

behavioral outcomes. These techniques therefore allow for a finer-grained examination of 

the strategic processes that may be performed to ensure efficient top-down control of 

behavior. 

These models may be further informed through the use of electrophysiology. ERPs 

allow for the examination of the relative activation and timing of these processes, and can 

therefore show whether processes are engaged proactively (e.g. in response to a pre-cue) or 

reactively (e.g. in response to a target). Examining activity within EEG frequency bands 

can also lead to a better understanding of the way in which processes evolve in the lead up 



 45 

to a response. However, while these electrophysiological measures provide a relatively 

direct measure of neuronal activity, the pattern of activity observed at the scalp can arise 

from an infinite number of neuronal generator configurations, making it difficult to map 

scalp-recorded activity to underlying neural structures (Coles & Rugg, 1995). In addition, 

some neural activity (particularly deep within the brain) cannot be detected using scalp-

recorded electrophysiology. Therefore, electrophysiological measures suffer from a lack of 

spatial resolution that in turn limits inferences about the networks underlying cognitive 

control processes. 

MRI techniques provide a more indirect measure of neural activity and the 

structures that support it. The haemodynamic response is based on the metabolic demands 

of neuronal populations, and so the signal derived is indirectly coupled with actual neuronal 

firing. Thus, while this technique offers precise spatial resolution in the order of 

millimetres, its temporal resolution is limited due to the lag between neuronal activity and 

the onset of the response, as well as the slow nature of the response itself. Diffusion MRI 

can build on inferences made on the basis of functional measures by measuring the strength 

or coherence of white matter tracts supporting communication between brain regions. 

However, these measures are also indirect, as inferences regarding structural integrity of 

white matter tracts are based on diffusion properties of water molecules in tissue. 

Recently there has been an increased focus on integrating across behavioural 

electrophysiological, haemodynamic and structural measures to provide converging 

evidence for the existence of brain networks that support specific cognitive processes. This 

approach overcomes the inherent disadvantages associated with using any one technique in 

isolation. One such strategy involves using measures derived from cognitive modeling to 

guide the interpretation of neuroscientific data, and vice versa. This ‘model-based 
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neuroscience’ approach limits speculation and allows for more specific inferences about the 

nature of the processes underlying measures of brain activation (Forstmann et al., 2011b). 

A key feature of this approach lies in taking advantage of individual differences to increase 

confidence that a particular cognitive process is related to activation in a specific brain 

network. Much of this work has focused on examining the neural correlates of the speed-

accuracy tradeoff in two-choice decision making (e.g. Forstmann, Brown, Dutilh, Neumann 

& Wagenmakers, 2010b; Forstmann et al., 2008a). For example, Forstmann et al. (2008a) 

found that individuals who showed lower response threshold estimates in response to 

instructions emphasizing speed relative to instructions emphasizing accuracy on a two-

choice decision making task showed increased activation in a fronto-striatal network. 

Therefore, activation in this network could be related to a specific strategic cognitive 

process, rather than a gross measure of performance. 

Another integrative approach involves relating measures of brain structure and 

function, to build more comprehensive models of the spatio-temporal dynamics of 

cognitive processes. For example, fMRI activation can be used to guide source modeling of 

ERPs to more reliably estimate the generator configuration driving activity at the scalp (e.g. 

Jamadar, Hughes, Fulham, Michie & Karayanidis, 2010). Another approach involves using 

individual differences to relate the magnitude of fMRI activation to the amplitude of ERP 

components (e.g. Horovitz, Skudlarski & Gore, 2002; Jamadar et al.; see Gore, Horovitz, 

Cannistraci & Skudlarski, 2006). As the haemodynamic response is too slow to enable 

dissociation of processes elicited by stimuli separated by only brief intervals, integrating 

fMRI activation with ERPs can provide a clearer picture of the timecourse of activation 

within brain regions. Further, as noted in Section 2.3.2.1, individual differences in diffusion 

MRI measures of white matter integrity have been related to fMRI activation as well as 
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electrophysiological measures to identify the structures that underlie these functional 

outcomes. Examining brain-behavior and brain-brain linkages takes advantage of the 

strengths of each technique while also overcoming some of their inherent limitations. 
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Chapter 3: Preparatory processes in the task-switching paradigm: Behavioural, ERP and 

fMRI evidence 

 

3.1 Behavioural findings in task-switching 

The ability to flexibly shift between multiple tasks according to environmental 

demands has been studied extensively with the task-switching paradigm. In this task, 

participants rapidly alternate between two or more simple tasks, such as classifying a target 

digit as odd or even, or classifying a target digit as higher or lower than 5.  Task-switching 

studies typically find a switch cost – slower reaction time and higher error rate for switch as 

compared with repeat trials. However, while switch cost is an extremely consistent finding, 

different explanations have been proposed to account for this effect (see Kiesel et al., 2010 

for a review). One view suggests that the switch cost reflects time taken to overcome 

interference from the previously relevant task (Allport, Styles & Hsieh, 1994). Another 

view posits that switch cost results from an active reconfiguration process that is engaged 

exclusively on switch trials to shift the system from readiness to perform one task to 

readiness to perform another (Rogers & Monsell, 1995). This additional process is thought 

to involve updating the ‘task-set’ – the set of rules that specify and link attentional and 

motor processes required for a particular task. Further, it is thought that part of this 

reconfiguration can be completely proactively, i.e. in anticipation of target onset. In this 

section, I present a selective review of the various processes that are thought to contribute 

to switch cost, paying particular attention to attempts to isolate anticipatory reconfiguration 

processes from other processes involved in task-switching. I then examine the question of 

what a switch-specific reconfiguration process might entail. 
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3.1.1 Early behavioural models of task-switching: Passive dissipation vs active 

reconfiguration of task-set 

Early evidence for the existence of an active preparatory process when 

switching tasks was found by Spector and Biederman (1976), who gave participants 

columns of two digit numbers and instructed them to either add 3 to each digit, subtract 3 

from each digit, or alternate between adding and subtracting 3 from successive digits. 

Participants had to retrieve from memory which task to complete. As expected, participants 

were slower when alternating tasks as compared to repeating the same task. In a second 

experiment, participants were given visual cues which indicated which task should be 

performed. While task switch trials were still slower than task repeat trials, the switch cost 

was smaller than when visual cues were not provided. This suggested that an active control 

process may be required on switch trials which may benefit from external cues. 

Two decades later, Allport et al. (1994) revived interest in task-switching 

research when they found evidence that an endogenous reconfiguration process cannot fully 

account for switch cost. Allport et al. used incongruent Stroop stimuli (e.g. the word blue 

printed in red ink), and two tasks of unequal difficulty – word-reading and colour-naming. 

These stimuli were presented in lists, with participants either reading the word for every 

item on the list, naming the colour of the ink for every item on the list, or switching 

between word-reading and colour-naming. Switch cost was measured by comparing RT for 

mixed-task lists with RT from single-task lists. Colour naming produced slower RT 

compared to word reading, indicating it was a more difficult task. Yet, switching from 

colour naming to word reading produced a greater switch cost as compared to switching 

from word reading to colour naming. This finding of an asymmetric switch cost between 

two tasks of unequal difficulty cast doubt over the notion of a switch-specific 
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reconfiguration process, as according to this view, switching to the easier task should have 

produced a smaller switch cost due to less effortful switch-specific reconfiguration. 

Allport et al. (1994) put forward an alternative explanation for the switch cost – 

that it is due to continued priming of the previous task-set as well as suppression of the 

now-relevant task-set – which they termed ‘task-set inertia’. The task-set inertia hypothesis 

is based upon two assumptions: 1) performing a task increases the primacy of the target-

response (T-R) mapping associated with that task and may also reduce the level of 

activation or inhibit T-R mappings associated with other tasks; and 2) the T-R mapping 

which was active on the previous trial remains partially active at the onset of the 

subsequent trial. This is assumed to facilitate performance when the same task is repeated 

on the next trial, but to interfere with performance when the next trial requires switching to 

the previously irrelevant task. Allport et al. suggested that when two tasks of unequal 

difficulty are performed, the weaker task (in this case, colour-naming) would require 

stronger suppression of the stronger task (word-reading). Hence, switching to the stronger 

task (word-reading) would require overcoming the persisting inhibition of that task. Further 

evidence for such a process came from their finding that, when participants switched 

between two tasks that had different T-R mappings (in this case, the word-reading Stroop 

task and a digit-magnitude task, which involve different stimuli, responses and T-R 

mapping), switch cost is substantially reduced as compared to switching between tasks that 

have similar T-R mappings (Allport et al.).  

In summary, while early research suggested that switch cost reflected a time-

consuming, endogenous process of reconfiguration in anticipation of switch trials, Allport 

and colleagues’ work suggested that switch cost could be accounted for by passive 

interference processes which affect the level of activation of competing sets of T-R 
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mappings. On switch trials the previous, now-irrelevant task-set is still partially active 

causing interference on the current trial. According to Allport et al., this interference can 

fully account for prolonged RT on switch trials, without any requirement for an endogenous 

process of task-set reconfiguration (see also Wylie & Allport, 2000). 

However, Rogers and Monsell (1995) produced evidence that an endogenous 

reconfiguration process can help account for at least part of the switch cost. Rogers and 

Monsell used an ‘alternating runs’ task-switching paradigm in which subjects alternated 

between two tasks in a fixed sequence (classifying a letter as a consonant or vowel and 

classifying a digit as odd or even). A 2 x 2 grid was continuously displayed, with the top 

two segments corresponding to the letter task and the bottom two segments corresponding 

to the digit task. The target moved around the grid in a clockwise direction, such that the 

task sequence was predictable (LLDDLLDDLL; see Figure 3.1). Each target consisted of 

one character that was relevant to the current task and another character that was not 

relevant to the current task. On 2/3 of trials, the irrelevant character belonged to the 

alternative task-set (e.g., if the relevant task was letter, the irrelevant character was a digit). 

On the remainder of trials, the irrelevant character did not belong to either of the tasks and 

was therefore neutral. When the irrelevant character was from the alternative task-set, on 

half the trials it was congruently mapped to the response required for the task-relevant 

character (e.g., A4 where A and 4 are both mapped to a left hand response), and on the 

other half it was incongruently mapped to the response required for the task-relevant 

character (e.g., A5 where 5 is mapped to right hand response). Consistent with Allport et 

al.’s (1994) task-set inertia hypothesis, switch cost was largest for incongruent trials, 

suggesting that the previous response mappings caused interference on these trials. 

However, switch cost was also observed on both neutral and congruent trials, a finding that 
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is not easily reconciled by the task-set inertia hypothesis, as there should be no carry-over 

of the previous T-R mappings for these trial types.  

 

Figure 3.1: Rogers and Monsell’s (1995) alternating runs paradigm. The top two segments were 
associated with the letter task, and the bottom two segments with the digit task. Targets were 
presented in a clockwise direction around the grid, so that the task sequence was completely 
predictable (Adapted from Karayanidis, Coltheart, Michie & Murphy, 2003).  

 

Rogers and Monsell (1995) found further evidence that the task-set inertia 

hypothesis cannot fully account for RT switch cost. In Experiment 6, participants alternated 

between repeating four trials of one task, and then repeating four trials of the other task. 

They argued that if there is task-set inertia, then a slowing of RTs should be observed not 

only for the first trial of a block, but should still be present for the remaining trials in the 

block. The effect of this interference should also decay over time, such that the greatest 

slowing should be seen on the first trial of the block, followed by the second and so on. 

Contrary to this prediction, RT did not differ between second, third and fourth trials in the 

block but was slower than for the first trial in the block, a finding that was again 

inconsistent with Allport et al.’s (1994) predictions. Thus, Rogers and Monsell argued that 

these results are consistent with a process of reconfiguration to the new task-set on the first 

switch trial of a block that was not required for subsequent trials in that block. 

Rogers and Monsell (1995) also manipulated the length of the response-target (R-
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T) interval within and between blocks to examine whether the time made available for 

preparation would affect switch cost. When the R-T interval was varied between blocks of 

trials, Rogers and Monsell found that switch cost decreased as R-T interval increased up to 

600 ms. As performance improved with greater opportunity for preparation, this provided  

evidence for the existence of a time-consuming, active preparatory task-set reconfiguration 

process. This reduction in RT switch cost with increasing R-T interval was not evident 

when R-T intervals were randomised within a block of trials, suggesting that this 

preparation is only carried on when the R-T interval is predictable. 

Rogers and Monsell (1995) argued that the operation of this reconfiguration 

process was akin to Shallice’s (1988, 1994) production-system account, in which 

competition between action sets or schemas is regulated by a top-down control mechanism 

which ensures that the correct schema is selected in order to achieve the current task goal. 

However, the fact that a switch cost remained even at the longest preparation interval of 

1200 ms (which they termed the residual switch cost) suggested that while subjects seemed 

to be able to partially prepare endogenously before target onset, the remainder of the 

reconfiguration processes were triggered by the target. The authors argued that these target-

triggered or ‘exogenous’ control processes are activated in order to overcome the prepotent 

tendency to respond to the target according to the task set which was previously active. 

Thus, Rogers and Monsell reasoned that task-set reconfiguration is a stage-like process, 

involving both endogenous and exogenous components.   

In sum, while Allport et al. (1994) argue that switch cost is a product of an 

entirely passive process whereby the previous task-set interferes with the current task set, 

Rogers and Monsell (1995) argue that switch cost is due to both an endogenous process of 

reconfiguration in anticipation of a switch in task, as well as an exogenous, target-driven 
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component of reconfiguration. The following section summarises research aimed at further 

dissociating these two components by using a cued-trials task-switching paradigm. 

 

3.1.2 Cued-trials task-switching paradigms 

The ‘alternating runs’ paradigm used by Rogers and Monsell (1995) is limited in 

that passive carry-over effects from the previous trial and active preparation for the 

upcoming trial cannot be separated within the R-T interval. If active preparation does occur 

within the R-T interval, then it may be carried out at any time following the response to the 

previous trial. Paradigms in which tasks alternate unpredictably and a task-indicating cue is 

presented for each trial allow passive and active processes to be distinguished, as active 

preparation can only begin after the cue is presented.  

Meiran (1996) used a paradigm in which participants were given a 2x2 grid and 

switched between two tasks – deciding whether a target was presented in the upper or lower 

half of the grid or deciding whether a target was on the left or right half of the grid. 

Participants were given explicit cues informing them about which task was required on the 

upcoming trial. In order to dissociate the effects of active preparation for the upcoming task 

and passive dissipation of the previous task, The length of the cue to target (C-T) interval 

was manipulated while the R-T interval was kept constant (see Figure 3.2). When the C-T 

interval increased (216 to 1716 ms) for a constant long R-T interval (1848 ms), switch cost 

decreased. Thus, when controlling for the effects of passive dissipation, performance 

improved with increased opportunity for preparation, supporting Rogers and Monsell’s 

(1995) contention that an active process is responsible for switch cost. Further, switch cost 

remained in the long C-T interval condition, which again supports the existence of an 

exogenous, target-triggered component of reconfiguration.  
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Figure 3.2: Schematics showing manipulation of the C-T interval, controlling for the length of the 

R-T interval (Adapted from Meiran, 1996). 

 

In a later study, Meiran, Chorev and Sapir (2000) held the C-T interval constant 

(117 ms) while varying the R-C interval (132 to 3032 ms). Switch cost also decreased with 

increasing R-C interval. Since the C-T interval was held constant changes in RT switch cost 

would not be related to active preparation, but rather to increased passive decay of 

activation of the previously relevant task-set with increasing passage of time. Hence, switch 

cost is attenuated with both increased time available for preparation and increased time for 

the previous task-set to dissipate, indicating that both active and passive processes play a 

role in task-switching. Meiran et al. proposed a multi-component switch cost framework. 

The first component of the overall switch cost, the preparatory component, explains the 

reduction in switch cost due to preparation occurring in the C-T interval. The second 

component is the residual switch cost. A third component is a ‘dissipating’ component, 

which explains the reduction in switch cost with increasing R-C interval. Following from 

this, Meiran et al. suggested that task switch cost should not be interpreted as being 

representative of the operation of a single process. Rather, switch cost appears to reflect the 
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operation of a number of different active and passive processes, which can be separated out 

by manipulating the R-C and C-T interval. 

 

3.1.3 The contribution of cue switching to switch cost 

While cued-trials paradigms can help differentiate between the relative role of 

passive and active processes to task-switching performance, they have some inherent 

limitations. When each task is mapped to one cue, switch trials involve not only a change in 

task but also a change in cue, and similarly, repeat trials involve both a repeat in task and 

cue. Logan and Bundesen (2003) argued that this confound is significant in that switch cost 

in the cued-trials paradigm may be explained entirely by slower encoding of the cue on 

switch trials. Thus, there may be no requirement at all for an executive control process on 

switch trials. 

Logan and Bundesen (2003) used a paradigm in which there was a 2:1 cue to task 

mapping (i.e., two cues were assigned to each task – high and low for the magnitude task, 

and even and odd for the parity task). This produced three possible conditions – cue repeat, 

in which both the cue and task repeated; task repeat, in which the cue changed but the task 

repeated; and task switch, in which both the cue and task changed. Results showed only a 

small task switch cost (task switch- task repeat), but a large cue switch cost (task repeat – 

cue repeat), supporting their argument that switch cost in the cued-trials paradigm may be 

largely attributable to the change in cue on switch trials (see also Mayr & Kliegl, 2003; 

Schneider & Logan, 2005).  

To further tease apart the contribution of cue-retrieval and other processes to switch 

cost, Arrington, Logan and Schneider (2007) used a paradigm in which participants were 

required to respond to both the cue and the target. It was argued that any task switch effects 
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on RT to the cue would reflect cue encoding, whereas task switch effects on RT to targets 

would represent true switch cost (separate from cue encoding effects). Results showed a 

true switch cost in target RTs, suggesting that cue encoding cannot completely explain 

switch cost. Therefore, although it has been shown that cue encoding on switch trials may 

account for some of the total switch cost, there is still a true task switch cost that is 

attributable to an active preparatory control process. 

 

3.1.4 Is there a switch-specific reconfiguration process? 

While the task-set reconfiguration model assumes switch-specific preparation, that 

is, a separate process or processes that is engaged on switch trials to prepare for the 

upcoming task (Rogers & Monsell, 1995), other models have proposed that more general 

preparation processes occur on both switch and repeat trials. Hence, these models suggest 

that switch cost arises fully or partially from these processes simply taking a longer time to 

implement on switch compared with repeat trials. Several lines of evidence suggest that 

preparation also occurs on repeat as well as switch trials, calling into question the core 

assumption of the task-set reconfiguration model.  

Firstly, it has been shown that repeat trials performed within mixed-task blocks 

show a performance decrement compared to repeat trials performed within single-task 

blocks (Kray & Lindenberger, 2000; Kray, Li & Lindenberger, 2002). This difference, 

termed the mixing cost, suggests that preparation for an upcoming task may also be carried 

out for repeat trials. It has also been found that reduction of RT for both switch and repeat 

trials occurs with increasing preparation interval. Altmann (2004) found that switch cost 

only reduced with increasing preparation interval when it was varied within-subjects, while 

increasing the preparation interval resulted in faster RT on both switch and repeat trials 
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whether preparation interval was manipulated within or between subjects. Thus, as the 

reduction of RT for both trial types appeared to be the more robust finding, Altmann 

suggested that a more general preparation process that is more strongly activated for switch 

trials may parsimoniously explain switch cost. 

Studies that manipulate task certainty provide further evidence for the existence of 

general rather than switch-specific preparation. For example, Dreisbach, Haider and Kluwe 

(2002) used a paradigm in which participants were given probability cues on each trial that 

specified the probability of repeating the same task vs. switching to a specified task. On 

each trial, cues predicted an upcoming repeat in task with either 0%, 25%, 50%, 75% or 

100% probability, and conversely an upcoming switch to a specific task with 100%, 75%, 

50%, 25% or 0% probability. Switch cost were not dependent on these probabilities – 

instead, when a task was specified with high probability, participants responded faster, 

regardless of whether cue called for a switch or repeat in task. Thus, predictability about the 

upcoming task appeared to affect preparation on repeat and switch trials to an equal extent.  

Koch (2005) manipulated predictability by comparing switch cost on alternating 

runs and cued trials paradigms in the same participants. Reaction time was slower on both 

switch and repeat trials for the cued-trials condition compared to the alternating runs 

condition. However, there was no corresponding increase in switch cost for cued-trials 

compared to alternating runs. Thus, again, task predictability did not appear to result in any 

switch-specific preparation advantage.  

Therefore, the effects of preparation interval, as well as manipulations of task 

predictability have shown that preparation does not appear to be exclusive to switch trials. 

These findings challenge the notion of a switch-specific task-set reconfiguration process, 

and suggest that the same general preparation processes are activated for both switch and 
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repeat trials, but to a greater extent for switch trials.  

 

3.1.5 Evidence for inhibition of irrelevant task-sets in task-switching 

Arguments for switch-specific reconfiguration are further weakened by ambiguity 

about what this process might entail. Rubinstein et al. (2001) proposed that endogenous 

preparatory reconfiguration may be best conceptualised as a goal shifting process, which 

entails insertion or deletion of goals in working memory. According to this model, one 

process that could be engaged exclusively in preparation for a switch in task is inhibition or 

suppression of the now-irrelevant task set, due to the requirement to delete/suppress this 

task set in order to maximize activation of the now-current task set. Evidence for such a 

process comes from studies utilizing the backward inhibition paradigm (e.g. Mayr & Keele, 

2000; see Koch, Gade, Schuch and Philipp, 2010, for a review). In this paradigm, 

participants use informative cues to switch between three different tasks (e.g. task A, B and 

C). When switching back to task A following one intervening trial (i.e., an ABA task 

sequence), reaction time is slower compared to switching back to task A following at least 

two intervening trials (i.e., a CBA task sequence). This n – 2 repetition cost is thought to 

reflect the need to overcome more recent, and therefore stronger, inhibition of task A when 

it was performed more recently. However, there is ongoing debate as to the timing of this 

inhibitory process, as it could be carried out at the level of task-set activation (i.e., when the 

cue appears), at the level of stimulus processing, or at the level of response selection.  

In their recent review article, Koch et al. (2010) argue that inhibition most likely 

targets response selection (see also Gade & Koch, 2007). Evidence for this comes from 

Schuch and Koch (2003), in which participants switched between three number-based 

tasks. On each trial, an auditory go (75%) or no-go (25%) signal was presented 
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simultaneously with stimulus onset. While the n – 2 repetition cost was observed if the 

intervening trial in an ABA sequence was a go trial, this cost was substantially reduced 

when this intervening trial was a no-go trial. Schuch and Koch therefore argued that 

response execution on trial n – 1 is required to produce backward inhibition, suggesting that 

inhibition acts at the level of response selection and execution. 

In contrast, Houghton, Pritchard and Grange (2009) argued that n – 2 repetition 

costs can also reflect inhibition in response to the cue. The degree of association between 

cue and target (referred to as cue transparency) was manipulated, with high transparency 

cues providing a feature of the target, and low transparency cues having no relationship 

with target features. Therefore, low transparency cues were designed to elicit more difficult 

cue-based retrieval of the correct task-set (i.e., biasing attention towards the relevant target 

feature) relative to high transparency cues. Low transparency cues, but not high 

transparency cues produced a significant n – 2 repetition cost, suggesting that when the task 

is difficult to retrieve on the basis of the task cue, inhibition appears to be required to 

suppress competing cue-task associations. This finding led the authors to argue that 

inhibition occurs when conflict is detected at the cue-task translation stage (see also Grange 

& Houghton, 2010). 

Therefore, there is evidence to suggest that inhibition of a previous task-set may be 

able to occur at the level of response selection/execution or at the level of cue-task 

translation. The finding that inhibition may occur at the level of cue-based retrieval of the 

relevant task-set supports Rubinstein et al.’s (2001) goal shifting process, indicating that 

inhibition of a previous task-set may be part of the top-down preparatory control strategy 

used on switch trials. However, these behavioral studies provide only indirect evidence that 

inhibition is carried out as part of preparatory control within the C-T interval (see Koch et 
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al., 2010). Other methodologies that allow for a more direct observation of the processes 

occurring within this interval are required to provide stronger evidence that this is the case. 

 

3.1.6 Summary of behavioural findings 

A number of theoretical models have tried to account for the behavioural switch 

cost. At one extreme, models posit the existence of a time-consuming, active 

reconfiguration process that includes both anticipatory and target-driven components 

(Rogers & Monsell, 1995; Rubinstein et al., 2001). At the other extreme, it is argued that 

passive dissipation of activation over time can account for switch cost (Allport et al., 1994). 

Multicomponent models, like that of Meiran et al. (2000) propose that both active 

reconfiguration and passive activation processes contribute to the switch cost, depending on 

task parameters. In addition, paradigms using a 2:1 cue to task mapping have shown that 

cue encoding may also account for at least part of the switch cost. 

While studies have found evidence for an active process of reconfiguration, this 

process is still not well understood. In particular, it is unclear whether there exists a switch-

specific preparation process that is distinct from more general preparation processes 

engaged for both repeat and switch trials. Behavioural data so far favour the latter, i.e., 

general preparation processes being engaged more strongly on switch than on repeat trials.  

However, there is some evidence that inhibition of the irrelevant task-set may be one 

process that is engaged specifically in preparation for a switch in task.  

 

 

3.2 Electrophysiological evidence for advance task-set reconfiguration 

The excellent temporal resolution of ERPs enables us to examine the timeline of 
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processes leading up to target onset. Therefore, ERPs have proven an attractive option for 

the study of preparatory reconfiguration, as they allow for a direct examination of the 

timecourse and organization of these processes within the C-T interval in cued-trials task-

switching paradigms. By examining how ERPs for switch and repeat trials within the C-T 

interval are affected by task parameters and the opportunity for advance preparation, it is 

possible to gain insight into the nature of preparatory reconfiguration processes.  

Electrophysiological studies of task-switching typically find differential activation 

for switch as compared with repeat waveforms following the response to the previous target 

in alternating runs paradigms or following the cue in cued-trials paradigms (Karayanidis, 

Coltheart, Michie & Murphy, 2003; Hsieh & Chen, 2006; Kieffaber & Hetrick, 2005; 

Lavric, Monsell & Mizon, 2008; Miniussi, Marzi & Nobre, 2005; Rushworth, Passingham 

& Nobre, 2002, 2005; Swainson, Jackson & Jackson, 2006; Wylie, Javitt & Foxe, 2003). 

This differential activation has typically been expressed as either a larger posterior 

positivity for switch compared with repeat cues (which we refer to as the differential switch 

positivity) or differential modulation of a slow frontocentral negativity. It is possible that 

the recording reference used may influence the relative morphology of these components. 

Studies that find the differential switch positivity but not the frontocentral negativity tend to 

use a linked mastoids reference (Goffaux, Phillips, Sinai & Pushkar, 2006; Karayanidis et 

al., 2003; Nicholson, Karayanidis, Poboka, Heathcote & Michie, 2005; Nicholson, 

Karayanidis, Bumak, Poboka & Michie, 2006a), whereas studies showing the frontocentral 

negativity tend to use a common average reference (Astle, Jackson & Swainson, 2006; 

2008; Mueller, Swainson & Jackson, 2007).  
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3.2.1 Differential switch positivity: Evidence from alternating runs and cued-trials task-

switching 

Karayanidis et al. (2003) systematically examined the ERP correlates of 

anticipatory control and post-target adjustment in a task-switching paradigm at different 

preparation intervals. Using Rogers and Monsell’s (1995) alternating runs paradigm, 

Karayanidis et al. reported a negative drift for both switch and repeat trials in ERPs locked 

to the response to the previous trial. At 200-300 ms post-response, a differential switch 

positivity emerged over parietal regions and peaked at around 400 ms (see Figure 3.3). At 

long R-T intervals (600 ms, 1200 ms), this positivity resolved before the onset of the 

subsequent target, while at short R-T intervals (150 ms, 300 ms) it continued beyond target 

onset. The authors argued that this differential switch positivity is consistent with Rogers 

and Monsell’s conceptualization of the endogenous, controlled component of task-set 

reconfiguration.  

 

 

                                                  

Figure 3.3: Response-locked waveforms from Karayanidis et al. (2003) at electrodes Fz, 
FCz and Pz, and across the four different R-T intervals (Adapted from Karayanidis et al., 
2003). 
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The differential switch positivity has also been consistently observed in cued-trials 

task-switching paradigms. For example, Nicholson et al. (2005) used a variant of Rogers 

and Monsell’s (1995) paradigm, with the task cued by a highlight of one of the four task 

quadrants. They differentiated cue-locked from target-locked effects by independently 

varying R-C interval and C-T interval to distinguish between passive task-set interference 

and active preparation for a switch in task. With a C-T interval of 600 ms, there was a 

greater positive modulation 300-400 ms after cue onset for switch compared with repeat 

trials, which was similar to the differential switch positivity observed by Karayanidis et al. 

(2003).  With a shorter C-T interval of 150 ms, both the behavioural switch cost and the 

differential switch positivity were greater than for the longer C-T interval condition. 

Moreover, a larger switch positivity emerged after target onset and switch cost was greater 

again when there was no preparation interval, indicating that task-switching performance is 

facilitated even at very short preparation intervals. Together, these findings support the 

contention that the differential switch positivity represents active reconfiguration processes 

that may occur before target onset where subjects are given the opportunity to prepare, or 

after target onset when there is no opportunity for preparation. 

An alternative explanation of this positivity is that it may reflect processing of the 

change in cue on switch trials, rather than an active reconfiguration process (e.g., Logan & 

Bundesen, 2003). However, ERP studies that have used a 2:1 cue to task mapping provide 

evidence that a cue encoding process can be dissociated from this switch positivity (e.g. 

Jost, Mayr & Rosler, 2008; Nicholson et al., 2006a). For example, Jost et al., (2008) 

showed that cue switch compared to cue repeat trials showed an increased negativity at 

fronto-central electrodes at around 300 ms. A significant switch-related positivity was still 

found between 700 and 850 ms post-cue for switch relative to repeat (cue switch) trials. 
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Thus, it appears that the switch positivity reflects active reconfiguration, rather than simply 

processing of a change in cue. 

 

3.2.2 Type of preparation indexed by the differential switch positivity 

A number of ERP studies have attempted to define the nature of preparation 

processes represented by the switch positivity. Rushworth et al. (2002; 2005) distinguished 

between ‘intentional’ and ‘attentional’ set preparation. Intentional set switching is defined 

as alternation between different rules linking targets to responses (e.g. switching response 

mappings from square = left and circle = right response, to square = right and circle = left 

response). Attentional set switching is defined as alternations between attending to different 

visual features of a target (e.g. attend to colour vs. attend to shape). Most task-switching 

paradigms require a change in attentional set and a change in intentional set, making it 

difficult to determine which of these processes is reflected in switch-related preparatory 

ERP components.  

Rushworth et al. (2002) showed that the posterior differential switch positivity was 

associated with intentional set switching. In this study, a paradigm was used in which the 

response to hand mapping was switched unpredictably every 7 to 18 trials. When the new 

‘intentional set’ was being initiated, an increased positivity for switch versus repeat 

waveforms was found early in the C-T interval over frontal areas, and later in the C-T 

interval over parietal sites. However, Rushworth et al. (2005) found a similar positivity for 

an attentional set switching task in which participants selected targets according to either 

their colour or shape. Kieffaber and Hetrick (2005) also found evidence that the differential 

positivity reflects preparation for the change in attentional set. Participants switched 

between three tasks – two of these were visual and one auditory – and responded to all of 
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these tasks using a match/mismatch response. Spatiotemporal principal components 

analysis revealed three separable components within the time window of the differential 

switch positivity. Two of these components were associated with switching between 

sensory features of the stimuli, while the third was associated with switching tasks 

regardless of task modality. As intentional set was held constant (with all three tasks 

requiring the same response), the authors argued that this component reflects switches in 

attentional set. Taken together, this evidence suggest that the differential switch positivity 

reflects both preparation to change response set, as well as preparation to focus attention on 

the relevant stimulus dimension. 

 

3.2.3 General updating vs. Switch-specific preparation 

As the morphology of ERPs within the C-T interval is similar for switch and repeat 

trials, it is unclear whether differential activation for switch compared with repeat trials 

reflects a switch-specific reconfiguration process, or greater activation of the same general 

task updating process required on all trials. Evidence that repeat trial waveforms also show 

preparatory activity comes from findings that cue-locked waveforms for repeat trials within 

a mixed-task block (termed mixed-repeat trials) show a larger positivity than repeat trials in 

a single-task block (termed all-repeat trials). This effect is similar to but earlier than the 

switch-related positivity (e.g. Goffaux et al., 2006; Jost et al., 2008). Wylie, Murray, Javitt 

and Foxe (2009) showed that preparation for mixed-repeat trials involves quantitatively 

different activation in the same cortical generators as switch trials, suggesting a common 

preparation process. However, Wylie et al.’s Figure 5 also showed distinct frontal 

generators for switch as compared to mixed-repeat trials that were distinct from parietal 

sources activated for both trial types. This finding suggests that although some preparation 
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processes may be engaged on both switch and mixed-repeat trials, switch trials may also 

require additional processes to configure the new task set. 

Miniussi et al. (2005) found further evidence that the switch positivity does indeed 

reflect an additional switch-specific preparation mechanism, using a cued trials task-

switching paradigm in which subjects switched between a verbal task and spatial task. 

Task-specific (verbal vs. spatial task) and switch-specific (switch vs. repeat cue) effects 

were compared within the C-T interval. Relative to repeat cues, switch cues produced an 

early differential switch negativity that was maximal over frontal sites (280-440 ms), 

followed by a differential switch positivity that was maximal over parietal sites (440-600 

ms). In contrast, anticipating a specific task set was associated with earlier modulation over 

parietal and then central sites. Thus, switching between tasks and loading the required task-

set appeared to be separable processes involving distinct neural mechanisms 

Further evidence for a switch-specific preparation process was presented in 

Nicholson, Karayanidis, Davies and Michie (2006b). Nicholson et al. used a paradigm in 

which participants switched between three tasks using cues that provided different 

information about the upcoming target (Figure 3.4). Two of the cues were fully 

informative, i.e., repeat (e.g., repeat task A) and switch-to (e.g., switch to task B) cues 

provided complete and valid information about which task was relevant for the upcoming 

target. The third cue was partially-informative i.e., the switch-away cue specified that the 

previous task was no longer relevant (e.g., do not repeat task A). However, the relevant task 

(i.e., whether it would be task B or C) was specified only by the location of the target. 

Hence, on these switch-away trials, during the preparation interval it was possible to 

suppress the previously active task but not activate the new task. Cue-locked waveforms 

showed an early differential switch positivity for both switch-to and switch-away cues but 
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not for repeat cues (D-Pos1) as well as a second differential switch positivity for switch-to 

cues only (D-Pos2). As the early positivity occurred for cues that predicted a switch in task 

with certainty, regardless of whether the upcoming task was specified, this supported the 

existence of a switch-specific preparation process. 

 

 

 

Figure 3.4: The paradigm used in Nicholson et al.’s (2006b) study, showing a trial progression from 
trial N to trial N + 1. A circle was divided into six segments, with groups of two segments forming 
three major task segments. Each of the three major segments was associated with a particular 
categorization task (letter, digit and colour). On each trial, the target appeared in one task segment, 
which defined which task would be performed on that target. The cue was a highlight of two 
adjacent segments, and the target appeared in one of the cued segments. Repeat cues highlighted the 
same task segment as on the previous trial. Switch-to cues highlighted a different task segment to 

that completed on the previous trial. Switch-away cues overlapped the two task segments 
corresponding to the two tasks that had not been completed on the previous trial (Adapted from 
Nicholson et al., 2006b).  
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In summary, the above ERP studies show direct evidence for advance preparation 

and additionally suggest that this preparation consists of multiple component processes. 

There is evidence for a switch-specific preparation process that can be dissociated from 

task-specific and more general preparation processes occurring on both switch and repeat 

trials. These findings are not in line with behavioural studies that argued against switch-

specific preparation (see Section 3.1.4). In order to reconcile these contradictory findings, 

researchers have attempted to link switch-related ERP components with behavioural 

measures, to show that these components are indexing effective preparation. 

 

3.2.4 Linking cue-locked ERP components to behavioural performance 

Studies have taken a number of different approaches to the integration of ERP with 

behavioural data. One approach examines whether variability in preparation-related ERP 

components can account for individual differences in behavioural outcomes. Using this 

approach, Kieffaber and Hetrick (2005) examined whether the amplitude of switch-related 

ERP components was related with behavioural performance using a cued trials paradigm in 

which participants switched between two visual tasks and one auditory task. The cue-

locked differential switch-positivity was inversely related with RT switch cost, but only 

when switching between the two visual tasks.   

Another approach involves partitioning ERPs into ‘fast’ and ‘slow’ trials on the 

basis of RT, in order to determine whether the efficiency of preparation is reflected in 

preparation-related components. Lavric et al. (2008) used a cued trials paradigm in which 

participants switched between a shape naming and a colour naming task. With a C-T 

interval of 800 ms, they found a differential switch positivity emerging around 500 ms over 

posterior sites and a concurrent negativity for switch compared with repeat trials over 
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anterior sites. Behavioural and ERP data were analysed separately for the fastest and 

slowest third of trials for each participant. Fast responses were associated with smaller RT 

switch cost as well as larger cue-locked switch-positivity than slow responses, supporting 

the link between switch-related ERP components within the C-T interval and active 

preparation to switch task. 

Karayanidis, Provost, Brown, Paton and Heathcote (2011) used orthogonal 

polynomial regression analysis (Woestenburg, Verbaten, Van Hees & Slangen, 1983) to 

provide more fine-grained evidence linking cue-locked ERPs with behavioural preparation. 

Single-trial cue-locked ERPs were extracted for each of 10 RT percentiles. As shown in 

Figure 3.5, the amplitude of the cue-locked posterior positivity varied as a function of RT 

for switch cues, but not repeat cues. Moreover, although repeat trials also showed a positive 

peak within the same latency range as the cue-locked positivity for switch trials, the switch 

positivity was always significantly larger even for the slowest switch trials. This suggests 

that, regardless of the efficiency of preparation, switch trials still showed an additional 

preparation process relative to repeat trials. Interestingly, the amplitude of the later pre-

target negativity was also inversely related to RT, but this time for both switch and repeat 

trials. Hence, these findings suggest a dissociation between the cue-locked posterior 

positivity and the pre-target frontocentral negativity. While the posterior positivity appears 

to be associated with a switch-specific preparation process, the pre-target negativity reflects 

a more general preparation process that is common to both repeat and switch trials. These 

findings provide converging evidence for the notion of a switch-specific preparation 

process that is distinct from more general task-updating processes. 
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Figure 3.5: Cue-locked waveforms for switch and repeat trials from Karayanidis et al. (2011), at 
each of the 10 percentiles (Adapted from Karayanidis et al., 2011). 
 

 

3.2.5 Post-target differences between switch and repeat trials 

Target-locked ERPs also consistently show differential activation for switch 

compared to repeat trials. With the alternating runs paradigm, Karayanidis et al. (2003) 

showed a large post-target centroparietal positivity that was attenuated for switch compared 

to repeat trials. Karayanidis et al. (2003) argued that this reflected a negativity for switch 

compared with repeat trials which was superimposed on the large positivity for both trial 

types. At long R-T interval trials (300 ms, 600 ms, 1200 ms), this negativity was time-

locked to target onset, while at the shortest R-T interval (150 ms), the negativity did not 

emerge until the differential switch positivity had resolved. Karayanidis et al. (2003) argued 

that the target-locked differential switch negativity mapped onto Rogers and Monsell’s 

(1995) exogenous or target-triggered component of reconfiguration.  
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A similar target-locked differential switch negativity has also been reported in cued 

task-switching paradigms. For example, Nicholson et al. (2005) showed that, at a C-T 

interval of 600 ms, a centroparietally maximal differential switch negativity emerged at 

around 100 ms following the target. Consistent with Karayanidis et al.’s (2003) findings, 

for both no cue and short C-T interval (150 ms) conditions, the differential switch 

negativity did not emerge until after the differential switch positivity had resolved. This 

finding has also been replicated in the Switch To and Away paradigm (Nicholson et al., 

2006b). Switch-to cues, which specified the required task before target onset, produced a 

differential switch negativity at target onset. In contrast, switch-away cues, which did not 

specify the upcoming task, produced a target-locked differential switch positivity, followed 

by a differential switch negativity. This suggests that the initiation of processes associated 

with the differential switch negativity are dependent upon the completion of processes 

associated with the differential switch positivity. Similar differential switch negativity has 

been reported for both intentional and attentional switches of task set (Rushworth et al., 

2002; 2005). 

 

3.2.6 Summary of ERP studies of task-switching 

The millisecond-resolution of ERPs means that they can show us the time course of 

preparatory and target-triggered processes leading up to a behavioural response, adding to 

our understanding of these processes from behavioural studies, and moving closer to 

developing a cohesive model of control processes required for efficient task-switching 

performance. A consistent finding in the literature is a differential positivity for switch 

relative to repeat trials in the interval leading up to an anticipated change in task 

(Karayanidis et al., 2003; Kieffaber & Hetrick, 2005; Nicholson et al., 2005; 2006a; 
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Swainson et al., 2006) which appears to be modulated by manipulations that affect 

reconfiguration. This component has been shown to reflect both stimulus-set and response-

set updating (Rushworth et al., 2002; 2005), and can be broken down into a number of sub-

components, including a preparation process that is specific to switch trials (Karayanidis et 

al., 2011). Integrating ERP and behavioural data has also shown that this preparatory 

component is a reliable marker of preparation efficiency (e.g. Lavric et al., 2008). 

Processing also differs for switch compared with repeat trials after target onset, with a 

target-locked differential switch negativity consistently reported. Together, these two 

components support multiple-component models of task-set reconfiguration (e.g. Rogers & 

Monsell, 1995; Rubinstein et al., 2001) that include both strategic preparation as well as 

target-driven adjustments.  

 

 

3.3 fMRI evidence for neural networks associated with task-switching 

While ERPs have allowed for a fine-grained analysis of the temporal course of 

processes involved in task-switching, one cannot deduce the underlying neural sources of 

these processes on the basis of scalp-recorded activity. Over the past decade, research has 

increasingly turned to fMRI as a technique for the identification of neural regions involved 

in task-switching, due to its high spatial resolution. Imaging studies have provided strong 

evidence for the existence of a fronto-parietal network involving the fronto-lateral cortex, 

the fronto-median cortex and posterior parietal cortex which is involved in the control of 

task-sets during task-switching (e.g. Dove, Pollmann, Schubert, Wiggins & von Cramon, 

2000; Kimberg, Aguirre & D’Esposito, 2000; Sohn, Ursu, Anderson, Stenger & Carter, 

2000). However, due to the slow BOLD response, activation within this network cannot be 
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reliably associated with a particular time window. Therefore, a significant challenge lies in 

determining which components of the fronto-parietal network are involved in preparatory 

control of task sets and which are involved in reactive changes in response to the target (see 

Ruge, Jamadar, Zimmermann & Karayanidis, 2013).  The following sections comprise a 

focused review of studies that have attempted to isolate cue-related activation from target-

related activation within the task-switching paradigm, in order to identify the networks 

underlying preparatory reconfiguration processes. 

 

3.3.1 Dissociating cue-locked from target-locked processes in fMRI data 

A number of strategies have been used in order to isolate cue-related processes from 

target-related processes in the task-switching paradigm. One approach uses a constant, long 

C-T interval (i.e., > 5 sec) to more effectively separate cue-related from target-related 

activity. This longer preparation interval allows more time for the cue-related BOLD 

response to strengthen, before the target-related response begins to take effect. However, 

studies which use these very long preparatory intervals typically do not show a reduction in 

switch cost when the cue is informative compared to when it is non-informative (e.g. Sohn 

et al., 2000; Luks, Simpson, Feiwell & Miller, 2002), suggesting that participants are not  

making use of the cue to prepare on switch trials. Another approach uses a variable C-T 

interval and incorporates a delay-related regressor in the general linear model in order to 

separate cue-related from target-related and delay-related activation (i.e., ‘jittering’; e.g. 

Ruge et al., 2005; Brass et al., 2003). Importantly though, randomly varying the preparation 

interval has been found to interfere with preparatory processes (Rogers & Monsell, 1995), 

suggesting that studies which use these modified paradigms may be targeting processes that 

are different from those observed in behavioural and ERP studies. 
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Yet another strategy uses a ‘partial’ trials design, in which cue-only trials (i.e., cue 

presented, with no target following) are intermixed with standard cue-target trials (e.g. 

Brass & von Cramon, 2002; Ruge, Goschke & Braver, 2009). This allows for the use of a 

more standard C-T interval, comparable to those used in behavioural and ERP studies. 

However, it is possible that the absence of the target may elicit a response that interferes 

with the preparation-related activity associated with cue-only trials. Therefore, attempts to 

isolate cue from target-related processes carry with them some significant limitations that 

can affect interpretation of activation patterns, as well as comparisons with results from 

more standard task-switching paradigms. These limitations may be overcome by using 

cross-methodology approaches that more directly link cue-locked effects with activation. 

 

3.3.2 Proactive vs reactive engagement of the fronto-parietal network 

Of the studies that have attempted to separate cue from target processing, evidence 

has been found for fronto-parietal engagement both as part of preparation, as well as post-

target adjustment. Brass and von Cramon (2002) used a task-switching design that included 

a fixed C-T interval and four different trial types: cue + target, no-cue + target, cue + no-

target and null trials. By examining the temporal derivative of cue + no-target and no-cue + 

target trials, the authors examined whether there were differences between cue-only and 

target-only activations. Activation in the inferior frontal junction (IFJ; a region situated 

between the frontal sulcus and the inferior frontal sulcus), the pre-supplementary motor 

area (pre-SMA) and the ventrolateral prefrontal cortex (VLPFC) was delayed for target-

only relative to cue-only trials. This suggests that these regions can be activated in a 

proactive manner when cues afford the opportunity to prepare, or in a reactive manner 

when there is no opportunity for preparation. However, it is important to note that this 
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activation did not differ for switch compared with repeat trials. 

Ruge et al. (2005) compared prepared (C-T interval 2000 ms) and unprepared (C-T 

interval 100 ms) trials. Switch-related activation was found for unprepared trials in IFJ, 

inferior parietal sulcus (IPS) and SPL. In line with Brass and von Cramon’s (2002) 

findings, these regions were also activated for both switch and repeat trials in the prepared 

condition. Thus, while these frontal and parietal regions were proactively engaged on all 

trials, they were also engaged reactively specifically on switch trials, to apply the already-

activated task-set. In contrast, Badre and Wagner (2006) found that these regions were 

activated for both prepared and unprepared trials. These findings suggest that regions 

within the fronto-parietal network can be proactively or reactively engaged depending on 

the experimental context. 

 

3.3.3 Can preparatory activity be attributed to cue encoding? 

As discussed previously in Section 3.1.3, cue priming appears to play at least some 

part in the production of switch cost. Therefore, it is possible that activity reported in the 

previous two sections could be related to cue processing, rather than preparation. Brass and 

von Cramon (2004) used two successive cues per trial to isolate activation associated with 

cue encoding and switch preparation. On each trial, two cues were presented sequentially 

before the target (see Figure 3.6). Activity associated with cue encoding was examined by 

comparing cue-repetition with cue-switch conditions. This contrast produced activation in 

lateral premotor cortex, inferior temporal gyrus and fusiform gyrus. Preparation-related 

activation (controlling for a change in cue) was examined by comparing meaning-switch 

with cue-switch conditions. Activation was found in the left IFJ, right IFG and right 

intraparietal sulcus. Therefore, cue encoding and task preparation elicited activation in 
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distinct brain regions. While regions related to sensory processing were associated with cue 

processing, a network of inferior frontal as well as posterior parietal regions appeared to be 

more strongly related to preparation. 

 

 

 

 

Figure 3.6: Brass and von Cramon’s (2004) paradigm. The paradigm included three two-cue 
conditions, in which the second cue determined which task was required for the upcoming target. In 
the cue-repetition condition, the second cue was identical to the first. In the cue-switch condition, 
the second cue was different to the first, but was still mapped to the same task. In the meaning-
switch condition, the second cue was different to the first, and also mapped to a different task. A 
single-cue condition was also included, which involved presentation of single cue followed by a 
target (Adapted from Brass & von Cramon, 2004). 
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3.3.4 Is there evidence for brain regions that are responsible for switch-specific 

preparation? 

As described in Section 3.2, several ERP studies have suggested that a switch-

specific preparation process can be disentangled from more general preparation processes 

required on switch and repeat trials (e.g. Karayanidis et al., 2011; Miniussi et al., 2005; 

Nicholson et al., 2006b). In fMRI data, switch-specific preparation processes would be 

indexed by significant activation in a particular brain region for switch, but not repeat trials. 

So far, fMRI studies have not been able to find evidence for such a switch-specific process. 

While many studies do report enhanced activation for switch relative to repeat trials, 

activation is increased for both switch and repeat trials compared to baseline (Barber & 

Carter, 2005; Braver, Reynolds & Donaldson, 2003; Crone, Wendelken, Donohue & 

Bunge, 2006). Further, a number of studies have reported no differential activation between 

switch and repeat trials (e.g. Brass & von Cramon, 2002; 2004; Luks et al., 2002; Ruge et 

al., 2005). Therefore, unlike ERP studies that show evidence for a dissociable switch-

specific process (e.g. Karayanidis et al., 2011; Nicholson et al., 2006b), fMRI studies tend 

to support the existence of a general preparation process that is engaged more strongly on 

switch compared with repeat trials. 

The studies that do show significantly increased activation for switch compared 

with repeat trials have produced largely heterogeneous findings in terms of the location of 

activation, as well as the circumstances under which these regions are activated, within the 

fronto-parietal network. One factor that appears to affect the location of activation is the 

type of switching required – that is, whether the paradigm involves attentional (stimulus-

related) or intentional (response-related) switching (see Section 3.2.2). Crone et al. (2006) 

compared switching between bivalent targets associated with multiple response sets (i.e., 
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intentional set switching) to switching between univalent response sets that were associated 

with only one response set. Increased switch-related activation was found in left DLPFC 

and ventrolateral prefrontal cortex (VLPFC), as well as bilateral posterior parietal cortex, 

including SPL for the bivalent targets compared to the univalent targets. Further, using a 

partial-trials design, Ruge, Müller and Braver (2010) also showed increased activation in 

DLPFC for switching between different intentional sets (i.e., different bivalent response 

mappings). In contrast, switching between attentional sets was associated with increased 

activation in posterior SPL. Therefore, it appears that DLPFC is associated with switching 

intentional set, while posterior parietal cortex plays a role in switching both intentional and 

attentional set. 

Some studies have attempted to isolate switch-specific preparation by examining 

relationships between fMRI activation and behavioural measures, and between fMRI 

activation and ERP measures. Badre and Wagner (2006) showed that activation within the 

left VLPFC decreased with increasing C-T interval and was negatively correlated with a 

simulated reduction in switch cost computed based on a CAMS-TS model, suggesting that 

this region plays a specific role in switch-related preparation. Braver et al. (2003) showed 

increased activation for switch relative to repeat trials in left VLPFC, DLPFC and SPL. 

However, in contrast to Badre and Wagner’s findings, the SPL showed increased switch-

related activation for fast compared to slow trials, suggesting that proactive engagement of 

this region may modulate the size of the switch cost. Jamadar et al. (2010) further 

corroborated this finding, showing that switch-related activation in the posterior SPL 

correlated with the amplitude of the cue-locked differential switch positivity, but not the 

target-locked differential switch negativity. These studies again support a role for PPC in 

switch-related preparation, while also suggesting that VLPFC may additionally be involved 
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in such a process. 

 

3.3.5 Summary of fMRI studies of task-switching 

fMRI studies of task-switching have produced largely heterogeneous findings, 

possibly owing to the wide range of design modifications employed to circumvent the 

problem of slow and overlapping BOLD responses. However, a number of studies have 

consistently shown activation in a network comprising medial, dorsolateral and 

ventrolateral prefrontal areas, as well as posterior parietal areas. Studies that have isolated 

cue from target-related processing have shown activation within this network at both of 

these processing stages, however this activation is often similar for switch and repeat trials. 

Only a few studies have found evidence for switch-related preparatory activation, with 

these studies suggesting that DLPFC and PPC are involved in action-related and attention-

related aspects of preparation, respectively.  

 

 

3.4 Summary of behavioural, ERP and fMRI studies of task-switching 

 Behavioural studies of task-switching have produced evidence that multiple 

processes, including passive carry-over effects, preparatory task-set reconfiguration 

processes as well as target-driven reactive control processes contribute to switch cost. 

However, it is still unclear what type of active control process is carried out in anticipation 

of a switch in task – whether it is a process that is qualitatively distinct from those required 

to prepare for a repeat in task, or simply a stronger engagement of the processes engaged to 

prepare for a repeat in task.  

ERP studies provide the millisecond resolution that is required to be able to 
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dissociate between these two interpretations. Consistent with multi-component models of 

task-switching (e.g. Rubinstein et al., 2001), these studies consistently show both cue-

locked and target-locked effects of switching tasks. Further, more recently studies have 

provided evidence that cue-locked preparation processes can be broken down into multiple 

sub-components. A cue-locked differential switch positivity maps onto a switch-specific 

preparation process that can be dissociated from more general task preparation processes 

required for both switch and repeat trials. While lacking the temporal resolution required to 

unambiguously separate rapid cognitive processes, fMRI has yielded a wealth of 

information about the spatial dynamics of cognitive control processes in task-switching. 

These studies also support multiple-component models of task-switching, showing that 

regions activated at cue onset are also reactivated at target onset. However, these studies 

tend to support a theory of preparatory reconfiguration that entails greater activation of the 

same processes already recruited to prepare on repeat trials. Therefore, ERP and fMRI 

studies have led to divergent conclusions regarding the nature of the preparatory 

reconfiguration process. 

 

 

3.5 Using a model-based neuroscience approach to decompose task-switching performance 

While neuroimaging evidence has added valuable information to models of 

cognitive control processes in task-switching, further work is required to understand which 

specific cognitive control processes are indexed in these neuroimaging measures. 

Associations have been found between neuroimaging measures and behavioural 

performance (see Section 3.2.4), suggesting that these effects are behaviourally relevant. 

However, end-state behavioural measures represent the culmination of multiple cognitive 
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processes, and therefore lack the sensitivity required to tap specific cognitive processes 

underlying task-switching performance. Formal cognitive modeling addresses this problem 

by decomposing behavioural performance into latent cognitive processes that would 

otherwise not be directly measurable. Integrating these latent measures derived from formal 

cognitive modeling with neuroimaging measures allows for more specific inferences about 

the relationship between neuroimaging data and specific cognitive processes. As task-

switching typically involves making a two-choice decision, the diffusion model (e.g. 

Ratcliff, 1978; see Section 2.1 in previous Chapter) appears particularly suited to 

investigating processes underlying task-switching performance. As discussed in Section 2.1 

of the previous Chapter, this model produces estimates of nondecision time, drift rate and 

response threshold. The following sections discuss how each of these parameters may be 

modulated by control processes carried out within task-switching paradigms. 

 

3.5.1 Nondecision time (Ter) 

Nondecision time encompasses processes not related to the decision itself, such as 

target encoding and response activation and execution. In the context of task-switching, it 

would also make sense to assume that switch cost may also contribute to nondecision time. 

For example, Klauer, Voss, Schmitz and Teige-Mocigemba (2007) used an implicit 

association test in which participants switched from a flower-insect categorization task to a 

positive-negative word categorization task. Response mappings were either compatible 

(i.e., flower and positive mapped to one finger and insect and negative to another) or 

incompatible (i.e., flower and negative mapped to one finger and insect and positive to 

another). Nondecision time was greater when switching between incompatible mappings 

compared to compatible mappings, with the authors suggesting that this increase could be 
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at least partly attributed to the greater control processes required for switching between 

incompatible response sets (Klauer et al., 2007). Therefore, in addition to encoding and 

motor processes, nondecision time may also include reconfiguration processes that must be 

completed before the decision process can commence, such as loading of the correct task 

set and target-response mappings. In the context of cued task-switching, multiple 

component models would predict that nondecision time should be differentially modulated 

by the degree of preparation afforded by the cue, as this would affect the ‘left-over’ 

reconfiguration that would be required at target onset. As informative cues should result in 

highly-prepared states at target onset and therefore require less time for additional post-

target reconfiguration relative to non-informative cues, we would expect cues affording 

greater preparation to be associated with lower nondecision time. 

 

3.5.2 Drift rate (v) 

Evidence accumulation is comprised of the systematic drive towards one response 

threshold, as well as noise in the system that produces random fluctuations between each 

response boundary. Drift rate captures the mean rate of this systematic component of 

evidence accumulation, and hence can be interpreted as a measure of both the efficiency of 

evidence accumulation, as well as the signal-to-noise ratio of the system. A higher drift rate 

corresponds to faster evidence accumulation and hence faster responses.  

As drift rate is closely tied to the response selection process, multiple component 

models of task-switching would predict that this parameter is set by a culmination of 

processes leading up to the response itself. Therefore, drift rate may be at least partially 

affected by task-set activation processes such as task-set biasing and activation of the 

correct set of target-response mappings, which may be more strongly implemented on 
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repeat relative to switch trials. This parameter may additionally be modulated by more 

passive processes, such as carry-over of priming from the previous task and target-triggered 

interference. Drift rate may therefore be modulated by several processes that contribute to 

switch costs. Using a cued-trials task-switching paradigm, Madden et al. (2009) showed 

decreased drift rate for switch relative to repeat trials in both a younger and older sample, 

suggesting that the efficiency of evidence accumulation is indeed reduced when there is a 

requirement to switch tasks. This suggests that switch costs may be partially attributable to 

reduced quality of evidence accumulation for switch relative to repeat trials.  

 

3.5.3 Response threshold (a) 

In addition to the rate with which evidence is accumulated, the speed of response 

selection is determined by response threshold. A low response threshold (i .e., a small 

difference between response boundaries) means that the threshold is crossed more quickly, 

but at the increased risk of an error due to random oscillations in the evidence accumulation 

process. In contrast, a high response threshold allows more time for evidence to 

accumulate, resulting in slower responses that carry less risk of making an error. The 

setting of response threshold is therefore thought to reflect a participant’s degree of 

response caution and to contribute to the speed-accuracy tradeoff. Participants have been 

shown to adjust response threshold according to performance incentives or perceived task 

difficulty.  For example, Voss, Rothermund and Voss (2004) found that participants raised 

response threshold when offered reward for correct responses as well as under more 

difficult task conditions (i.e., incompatible response mapping). 

In sum, response threshold adjustment appears to be driven by both extrinsic and 

intrinsic factors, and may be conceptualised as a controlled, strategic process that assists in 
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balancing the speed-accuracy tradeoff. This suggests that threshold adjustment may be a 

key regulatory process required to deal with the fluctuating demands of our environment, 

and so may be part of the strategic preparation processes required in anticipation of a 

switch or repeat in task within cued-trials task-switching. 

 

3.5.4 Summary of evidence accumulation modeling in task-switching 

The breakdown of overt measures of task-switching performance into latent 

constructs is one approach to more directly targeting the specific processes underlying 

cognitive control in this paradigm. For example, the extent of preparatory task-set 

reconfiguration completed prior to target onset can be indexed in the nondecision time 

parameter. Other parameters that contribute to the decision process itself can also inform 

about the type of processes that contribute to end-state measures. For example, the rate of 

evidence accumulation, or drift rate, has been shown to be higher for switch relative to 

repeat trials. In addition, while the response threshold parameter has not been directly 

examined within the task-switching paradigm, there is evidence to suggest that participants 

may strategically update their degree of response caution according to perceived task 

difficulty. Therefore, it would be expected that participants may set their response threshold 

higher when switching between tasks compared to repeating the same task. Using a model-

based neuroscience approach that incorporates these parameters into the analysis of 

neuroimaging data can constrain interpretations of neuroimaging effects and therefore lead 

to the development of more detailed models of task-switching. 

We used this approach to examine the specific cognitive control process or 

processes that are recruited to prepare for a switch in task, and combined this with a 

number of neuroimaging methodologies designed to target the temporal and spatial 
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properties of switch-specific preparation. Using this integrative approach, we add to current 

models of preparatory control in task-switching. In the following chapter, we first used 

ERPs to show that switch-specific preparation could be temporally distinguished from task 

preparation processes. We then used cognitive modeling to uncover the nature of this 

switch-specific preparation. 
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Chapter 4: Anticipatory reconfiguration elicited by fully and partially informative 

cues that validly predict a switch in task
1
. 

 

Task-switching paradigms require rapid alternation between two or more task-sets 

defined on the basis of distinct or partially overlapping target features. Typically, these 

paradigms produce switch costs - longer reaction times (RTs) and more errors when tasks 

are switched as compared with when tasks are repeated (e.g., Rogers & Monsell, 1995). In 

cued-trials paradigms, increasing the cue-target interval reduces RT switch cost, but a 

significant residual switch cost remains even with long preparation intervals (Meiran, 

Chorev & Sapir, 2000). Recent behavioral (e.g., Arrington, Logan & Schneider, 2007) and 

electrophysiological (e.g., Karayanidis, Coltheart, Michie & Murphy, 2003) studies support 

multi-component models of task-switching, with switch cost reflecting both active control 

processes (e.g., task-set reconfiguration; Rogers & Monsell) and passive target-driven 

processes (e.g., stimulus-response [S-R] priming; Wylie & Allport, 2000).  

Although there is evidence of a role for inhibition in task-switching, it is unclear at 

what stage an inhibitory mechanism may be activated and whether it is a top-down process 

or a bottom-up process. Mayr and Keele (2000) argued that a longer RT on the third trial of 

an ABA sequence, as compared to a CBA sequence, supports an inhibitory control process, 

albeit a rather low level one, since inhibition was not overcome with increasing preparation. 

Koch and colleagues argued that this inhibition is a by-product of response activation, since 

studies have shown no backward inhibition (Schuch & Koch, 2003) or RT switch cost 

                                                   
1 Published as Karayanidis., F., Mansfield, E. L., Galloway, K. L., Smith, J. L., Provost, A. & 

Heathcote, A. (2009). Anticipatory reconfiguration elicited by fully and partially informative cues 
that validly predict a switch in task. Cognitive, Affective and Behavioral Neuroscience, 9, 202-215. 
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(Koch & Philipp, 2005) following no-go trials that require task-set preparation but no 

response execution. Driesbach, Haider and Kluwe (2002) compared subjective expectancy 

for partially informative cues, which signal an impending switch trial without identifying 

which specific task to prepare, and fully informative cues, which indicate which task to 

switch to. Unlike fully informative cues, partially informative cues did not produce 

subjective expectancy effects Thus, knowledge that the task would change without 

specification of which task would be performed did not produce the differential response 

benefit that would be expected if inhibition of the previously active task set was required to 

switch tasks (see also Hubner, Dreisbach, Haider & Kluwe, 2003).  

In contrast, Nicholson, Karayanidis, Davies and Michie (2006b) found event-related 

potential (ERP) evidence consistent with task-set inhibition during the cue-target interval. 

ERPs are systematic fluctuations in brain electrical activity that are extracted from the 

electroencephalogram (EEG), using signal averaging techniques (Andreassi, 2000), and 

have been shown to provide a high temporal resolution window into the processes 

underlying task-switching. In particular, ERP waveforms time-locked to cue onset 

consistently show a larger parietal positivity for switch, as compared with repeat, trials (e.g. 

Kieffaber & Hetrick, 2005; Miniussi, Marzi & Nobre, 2005; Nicholson, Karayanidis, 

Bumak, Poboka & Michie, 2006a; Nicholson, Karayanidis, Poboka, Heathcote & Michie, 

2005; Rushworth, Passingham & Nobre, 2005). This differential switch positivity (D-Pos) 

emerges as early as 200ms post-cue and, with long preparation intervals, peaks prior to 

target onset. After target onset, ERPs for switch trials show a negative shift, relative to 

repeat trials, that emerges after 150 ms and extends more than 800 ms after target onset. D-

Pos has been mapped to processes associated with task-set reconfiguration during the cue-

target interval, whereas the switch negativity has been mapped to target-dependent 
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processes that cause residual switch cost (Karayanidis et al., 2003; Nicholson et al., 2006a; 

2005).  

Nicholson et al.’s (2006b) ERP evidence for task-set inhibition came from a cued 

trials task-switching paradigm in which participants randomly alternated between three 

tasks. As is usual in task-switching paradigms, different cues signaled task repetition 

(repeat cue) or a switch to a specified task (switch-to cue). A third, partially informative 

cue signaled only that the task would change (switch-away cue), with the actual task to be 

performed being specified only upon target onset (see Figure 4.1). An early cue-locked 

differential positivity (D-Pos1) was found for both switch-away and switch-to trials, 

relative to repeat trials (see Figure 3b in Nicholson et al.). Switch-to trials also showed a 

second differential positivity that occurred later within the cue-target interval (D-Pos2), 

whereas for switch-away trials, this component occurred after target onset. After target 

onset, both types of switch trials showed a differential negativity relative to repeat trials, 

but this was delayed until after D-Pos2 on switch-away trials.   

Nicholson et al. (2006b) suggested that D-Pos2 reflects activation of the relevant 

task-set, which can occur prior to target onset for switch-to trials, but only after target onset 

for switch-away trials. Since both switch-to and switch-away trials indicate that the 

previously active task-set will not be repeated, the D-Pos1 component, which was common 

to both of these trial types, was interpreted as reflecting inhibition of the now irrelevant 

task-set. However, D-Pos1 might also be attributed to differences in cue processing 

between repeat and both types of switch trials. In particular, both switch-to and switch-

away trials involved a physical cue change between trials, which may have resulted in 

greater cue processing being required than for the cue on a repeat trial, where cue 

processing may have been primed by cue repetition. 
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Nicholson et al. (2006b) found that switch cost was larger on switch-away, as 

compared to switch-to, trials,\ and that increasing the cue-target interval reduced RT switch 

cost for switch-to, but not switch-away, trials. The length of the cue-target interval may 

have had no effect on switch-away trials because task-set inhibition was complete before 

the target appeared, even at the short cue-stimulus interval (200 ms). However, it is also 

possible that there was no cue-target interval effect on switch-away trials simply because 

participants did not make any use of the switch-away cue. The equivalence of early ERP 

waveforms (D-Pos1) for switch-to and switch-away could then be attributed to participants 

undertaking the same cue-encoding processes in both conditions. If a switch-away cue does 

allow partial preparation, it should cause a reduction in switch cost, even though this 

reduction would be less than for switch-to cues. However, the behavioral benefits of the 

switch-away cue could not be established by Nicholson et al. since their design did not have 

a baseline condition.  

 

 

4.1 Experiment 1 

The present study addresses these issues, using an identical design to that of 

Nicholson et al. (2006b), with the exception that an extra, non-informative cue type was 

included. This cue signaled that the following trial might require a repeat or a switch in task 

(see Figure 4.1). Like switch-to and switch-away cues, non-informative cues involved a 

physical shift in cue position. However, unlike switch-to and switch-away cues, non-

informative cues did not indicate that the previously active task-set would be irrelevant on 

the next trial. In fact, they indicated that there was a 50% chance that the task would be 

repeated. Although inhibition of the previously active task-set is an efficient strategy for 
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switch-to and switch-away cues, this is not the case for non-informative cues. Hence, if D-

Pos1 represents processes associated with inhibition of the previously active but now 

irrelevant task-set, it should occur for switch-to and switch-away cues, but not for non-

informative cues. Alternatively, if D-Pos1 represents processing of the change in cue 

position, it should occur for switch-to, switch-away and non-informative cues.  

The non-informative cue condition also acted as a baseline that allowed us to 

investigate whether switch-away cues provide some behavioral benefit (i.e., reduce switch 

cost) by allowing partial preparation for a task switch. Note that non-informative and 

switch-away cues were equally informative about which task would occur next. That is, 

both of these cue types ruled out exactly one of the three possible tasks. Hence, a 

comparison of performance for these cue types controlled for task uncertainty, and 

specifically, tested for benefits related to knowing that the previous task would not be 

repeated.    
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Figure 4.1: Top left: Example of task-position mapping. Middle: The four types of cues used to 
indicate the requirements of the next trial (repeat, switch-to switch-away and non-informative). 
Each cue type was presented on 25% of trials. Bottom: Stimulus-response (S-R) mappings with the 

four possible stimuli associated with each response. These were counterbalanced across 
participants. 
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4.1.1 Method 

 

4.1.1.1 Participants 

Twenty-three undergraduate students (18 female, 5 male) with a mean age of 21.3 

years (SD = 3.51) were recruited from an introductory psychology course and participated 

for course credit.  

 

4.1.1.2 Stimuli and Tasks 

The paradigm was identical to that used by Nicholson et al. (2006b) with the 

exception of the additional non-informative cue. Briefly, participants viewed a circle (5° of 

visual angle) divided into six wedges, with pairs of adjacent wedges grouped by thicker 

lines demarcating three task sections: digit, letter, and color (see Figure 4.1, top).  Each 

target was a pair of characters consisting of combinations of a letter, a digit or a non-

alphanumeric symbol and was presented either in grey or in color. Each target (e.g., A4) 

consisted of three dimensions (see Figure 4.1, bottom) – one relevant to the currently cued 

task (e.g., a letter mapped to left hand response), one selected randomly from one of the 

two alternative tasks and incongruently mapped with the relevant task (e.g., a digit mapped 

to right hand response) and one that was neutral (e.g., gray, not mapped to any response). 

The same target could not appear on two successive trials.  Response-target interval was 

1400 ms and included a 1000 ms cue-target interval. 

Four cue types (i.e., repeat, switch-to, switch-away and non-informative) were 

defined by cue location and were presented with equal probability in a pseudo-random 

sequence so that the same cue was not repeated on more than three consecutive trials. Non-

informative cues resulted equiprobably in a switch or a repeat trial which was defined by 
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the location of the target, thereby resulting in five trial types (i.e., repeat, switch-to, switch-

away, non-informative switch and non-informative repeat). The target always appeared in 

one of the two segments highlighted by the cue. 

 

4.1.1.3 Procedure 

All the participants attended two sessions scheduled 7-14 days apart. The first 

session included task training and practice (732 trials on each task alone and switching 

between tasks). The second session included further practice (another 732 trials) followed 

by the behavioral and EEG testing session. The testing session consisted of nine runs of 96 

trials each. The participants were encouraged to respond as quickly and accurately as 

possible. Auditory feedback was provided after an incorrect response, and behavioral 

feedback (mean RT and percentage correct) was displayed at the end of each run. EEG was 

continuously sampled at 2048 Hz/channel, reference free, from 64 scalp electrodes, the 

mastoids and nose using a Biosemi ActiView II system. Vertical electro-oculogram (EOG) 

was recorded from the supraorbital and infraorbital ridges of the left eye, and horizontal 

EOG from the outer canthi of each eye. 

 

4.1.1.4 Data Analysis 

The first five trials of every run, trials associated with an incorrect response, trials 

immediately following an incorrect response and trials on which RTs were shorter than 

200ms (0.005%) or longer than 3 standard deviations above the participant’s mean RT 

(1.7%) were excluded. A 3 (task: letter, digit, color) x 5 (trial: repeat, switch-to, switch-

away, non-informative repeat and non-informative switch) repeated measures ANOVA was 

performed. Critical values were adjusted using the Greenhouse–Geisser correction to avoid 
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violating the assumption of sphericity (Vasey & Thayer, 1987), and simple comparisons for 

trial were corrected with family-wise error rate adjusted at α=.01(unless otherwise 

reported). For behavioral data, we compared repeat trials with each of switch-to, switch-

away and non-informative repeat trials, and switch-away trials with each of switch-to and 

non-informative switch trials. Task did not interact with trial type for either RT (F=1.64) or 

error rate (F=2.43), so all behavioral and ERP analyses were averaged over task. 

EEG data were analyzed using Brain Electrical Source Analysis (BESA v5.1). Scalp 

electrodes were re-referenced offline to linked mastoids, and EOG artifact correction was 

applied using a regression algorithm (Ille, Berg and Scherg, 2002). Cue and target-locked 

EEG epochs were extracted from 300 ms before to 1200 ms after each cue and target (200-

ms pre-event baseline), and epochs with artifact exceeding a 100µV threshold were 

rejected. Averaged waveforms were created for each cue and target type, averaged over 

response hand and task. Both cue-locked and target-locked individual ERP waveforms 

included a mean of 130-140 trials, except for target-locked non-informative switch and 

repeat trials, which included half that number. Target-locked data from two participants 

were excluded because there were fewer than 40 epochs contributing to one of the non-

informative trial types. Therefore, cue-locked data are reported from 23 participants, and 

target-locked data are from 21 participants.  

Difference waveforms were calculated by subtracting the repeat waveform from 

each of the remaining waveforms and were visually inspected to determine time windows 

and scalp topography of maximal differentiation between cue types. For cue-locked 

waveforms, two mean amplitude windows were defined on the basis of the positivity for 

switch-to relative to repeat waveforms (250-400ms, 450-700ms) and were analyzed at the 

parieto-occipital midline site (POz) using a one-way ANOVA with 4 levels of cue type. We 
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compared repeat cues with each of the other three cues and switch-away with switch-to and 

non-informative cues. For target-locked waveforms, two mean amplitude windows were 

used to define an early positivity that emerged around the peak of the P2 and a second, later 

positivity around the latency of the N2 (180-250 and 300-370 ms, respectively) and were 

analyzed at F4 where the effects of trial were maximal. A third window (420-550ms) that 

targeted the negativity for switch-to relative to repeat trials was analyzed at Cz. Four 

contrasts were defined comparing repeat trials with each of the other three trial types. 

Where significant trial type differences emerged at these scalp sites, the scalp distribution 

of these differences was analyzed using paired-samples t-tests at each electrode and are 

displayed as head maps in Figures 4.2 and 4.3. 

 

 

4.1.2 Results 

Because Nicholson et al’s (2006b) argument that task-set reconfiguration involves 

task-set inhibition as well as task-set activation was based on ERP data, we will discuss 

first the ERP findings in order to establish replication of the original finding and present the 

outcomes for the non-informative cue. Figures 4.2 and 4.3 show average cue-locked and 

target-locked waveforms, respectively. Figure 4.4 shows average behavioral and ERP 

estimates and the results of associated inferential tests. 
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Figure 4.2: a) Cue-locked ERP and difference waveforms for each trial type at POz. Gray bars 
indicate the mean amplitude windows used in the analyses. b) Head maps showing sites of 
significant deviation between different trial types over 250-400ms and 450-700ms. Open squares: α 
=.05; filled squares: α =.01. Over 250-400 ms, the switch-to (S-T) vs. repeat (Rpt) contrast was 
most significant over parieto-occipital sites (p=2.6-6 - 0.005). The switch-away (S-A) vs. Rpt 
contrast was most significant over frontal and parieto-occipital electrodes (p=2.5-8 - 0.01). The non-

informative (NI) vs. S-A contrast was most significant over parieto-occipital electrodes (p=5.1-5 - 
0.01). Over 450-700 ms, the switch-to vs. repeat contrast was most significant at POz (p=0.009). 
The S-T  vs. S-A contrast was most significant at parieto-occipital sites (p=.0009 - 0.01). 
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4.1.2.1 Cue-locked waveforms 

Cue-locked waveforms showed a sustained positivity over 100-800ms for all trial 

types (Figure 4.2a, left). The main effect of cue was significant at POz for both early and 

late positivities F(3,66)=18.10, p<.001; F(3,66)=8.45, p<.001, respectively. Difference 

waveforms were derived between each cue type and the repeat waveform (Figure 4.2a, 

right). A large broad positivity was evident over 150-800ms in the switch-to difference 

waveform. This was also evident in the switch-away difference waveform, but dissipated by 

400ms. Non-informative cues did not show any positivity relative to repeat cues.  

The early positivity was significantly larger for both switch-to and switch-away cues 

as compared to repeat cues, F(1,22)=39.30, p<.001; F(1,22)=31.68, p<.001, respectively 

(Figure 4.4b). This differential positivity for switch-to and switch-away relative to repeat 

cues emerged at central sites but was stronger at parietal and occipital sites and was also 

reflected at frontopolar locations (Figure 4.2b). Importantly, this early positivity was also 

larger for switch-away cues, as compared with non-informative cues, F(1,22)=17.89, 

p<.001, across most parietal-occipital sites (Figure 4.2b) and did not differ in amplitude 

between repeat and non-informative cues at any site. The later positivity was larger for 

switch-to than for both repeat cues and switch-away cues at POz, F(1,22)=9.31, p=.006,  

F(1,22)=12.65, p=.002, respectively (see Figure 4.4b), an effect that was distributed over 

the parietal-occipital scalp (Figure 4.2b). There was no difference between the other cue 

types in this latency range.  
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Figure 4.3: a) Target-locked ERP and difference waveforms at F4 and Cz. Gray bars indicate the 

respective mean amplitude windows used in analysis. b) Head maps showing sites of significant 
positive deviation relative to repeat (Rpt) trials over 180-250ms, 300-370ms and 420-550ms. Open 
squares: α=0.05; filled squares: α =0.01. Over 180-250ms, the switch-away (S-A) vs. Rpt contrast 
was most significant at F4 (p=0.009). The non-informative repeat (N-R) vs. Rpt contrast was most 
significant over frontal sites (p=0.002 - 0.01). Over 300-370ms, the S-A vs. Rpt contrast was most 
significant at F8 (p=0.02). The N-R vs. Rpt contrast was most significant over left centro-parietal 
sites (p=0.0009 - 0.01). The non-informative switch (N-S) vs. Rpt contrast was most significant at 

F4 (p=0.007). Over 420-550ms, the switch-to (S-T) vs. Rpt contrast and the S-A vs. Rpt contrast 
were most significant over centro-parieto-occipital electrodes (p=0.0001 -0.009; p=0.0003 - 0.009, 
respectively). The N-R  vs. Rpt contrast was most significant at Cz (p=0.005) and the N-S vs. Rpt 
contrast was most significant over fronto-central sites (p=0.004 - 0.009). 
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4.1.2.2 Target-locked waveforms 

Target-locked waveforms showed an early N1 and large fronto-central P2 followed 

by an N2 and LPC complex (Figure 4.3a, left). Switch-to minus repeat difference 

waveforms showed a broad negative shift spreading over 200-800ms after target onset that 

was largest at Cz (Figure 4.3a, right). All other difference waveforms show a right frontally 

maximal positivity over 200-400ms, followed by a broad centrally maximal negativity.  

Target-locked difference waveforms for switch-away, non-informative repeat and 

non-informative switch targets showed two positive peaks: one within the latency range of 

the frontal P2 (180-250ms) and the other around 100ms later (300-370ms; Figure 4.3a, 

right). Both windows showed a significant main effect of trial type at F4, F(4,80)=3.30, 

p=.043, ε=.538; F(4,80)=7.37, p<.001. The early positivity (180-250 ms; Figure 4.4c) was 

larger for both switch-away and non-informative repeat targets as compared to repeat 

targets, F(1,20)=8.45, p=.009; F(1,20)=11.85, p=.003, respectively. This early target-

locked differential positivity was more widespread over frontocentral sites for non-

informative repeat cues but was fairly localized over the right frontal scalp for switch-away 

cues (Figure 4.3b). The later positivity (300-370ms) was larger for both non-informative 

repeat and non-informative switch targets as compared to repeat targets (F(1,20)=10.77, 

p=.004, F(1,20)=9.03, p=.007, respectively; Figure 4.4c), over both right frontocentral and 

left centroparietal sites (Figure 4.3b). This positivity was again evident for switch-away 

cues, but was only marginally significant over the right frontal scalp (F(1,20)=4.77, 

p=.041). 

Mean amplitude over 420-550ms in the target-locked waveforms produced a 

significant main effect of trial at Cz (F(4,80)=6.38, p=.002; Figure 4.3a) reflecting a 

significant negative deflection for all trial types, relative to repeat targets (Figure 4.4c; 
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switch-to, F(1,20)=16.65, p=.001; switch-away, F(1,20)=19.45, p<.001; non-informative 

switch, F(1,20)=8.37, p=.009; non-informative repeat, F(1,20)=10.03, p=.005). This post-

target switch negativity showed a broad scalp distribution for switch-to and switch-away 

targets, especially over centroparietal sites (Figure 4.3b), whereas the effect was restricted 

over the frontocentral midline for both non-informative switch and non-informative repeat 

targets.  

 

4.1.2.3 Accuracy and Mean RT 

Mean RT showed a significant effect of trial type, F(4,88)=38.62, p<.001, ε=.320 

(Figure 4.4a). Responses for repeat trials were significantly faster than for non-informative 

repeat, F(1,22)=61.49, p<.001, switch-to, F(1,22)=32.29, p<.001, and switch-away trials, 

F(1,22)=51.59, p<.001. RT for switch-away trials was longer than for switch-to trials, 

F(1,22)=37.36, p<.001, but not significantlyshorter than for non-informative switch trials.  

Although error rate was quite low (2.8-5.5%; Figure 4.4a), the main effect of trial 

type was significant, F(4,88)=10.76, p<.001, ε=.673. Repeat trials produced fewer errors 

than did all other trial types (switch-to, F(1,22)=16.87, p<.001; switch away, F(1,22)=9.45, 

p=.006; non-informative repeat, F(1,22)=21.27, p<.001). Error rates were also higher for 

non-informative switch than for switch-away trials, F(1,22)=9.53, p=.005. 

We examined whether the amplitude of the early cue-locked positivity was 

associated with improved behavioral performance, using one-tailed Pearson correlations for 

switch-to and switch-away cues which showed clear and measurable D-Pos1. Larger 

positivity was associated with faster RT for switch-to trials (r=-.691, p<.001, n=23) and 

less strongly for switch away trials (r=-.367, p<.05, n=23) but showed no relationship with 

error rate.  
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Figure 4.4: a) Mean RT and error proportion for each trial type. b) Cue-locked ERPs: mean 
amplitude over 250-400ms and 450-700ms post-cue at POz. c) Target-locked ERPs: mean 
amplitude over 180-250ms and 300-370ms post-target at F4 (left, middle) and over 420-550ms 
post-target at Cz (right). R = Repeat; N-R = Non-informative Repeat; S-T = Switch To; S-A = 
Switch Away; N-S = Non-informative Switch. Significant differences between conditions are 

shown by solid lines at p<.01 and broken lines at p<.05.  
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4.1.3 Discussion 

The ERP data replicated Nicholson et al.’s (2006b) finding of a posterior cue-locked 

D-Pos1 for both switch-to and switch-away cues, followed by a D-Pos2 that was cue-locked 

for switch-to trials and target-locked for switch-away trials. Both switch-to and switch-away 

trials elicited a large post-target switch negativity, as compared to repeat trials, and the 

onset of this negativity was delayed until after resolution of the earlier positivity for switch-

away trials, again suggesting that it reflects target-triggered processes such as completion 

of task-set reconfiguration or S-R priming.  

Notably, within the cue-target interval, non-informative cues showed no evidence of 

any differential switch positivity relative to repeat cues. However, after the onset of the 

target that defined the currently active task-set, both non-informative repeat and non-

informative switch trials showed a significant differential positivity relative to repeat trials. 

The finding that, unlike switch-to and switch-away cues, non-informative cues did not elicit 

the D-Pos1 within the cue-target interval indicates that this component does not reflect 

processing of a change in the physical position of the cue. It could be argued that although 

non-informative cues involved some spatial displacement, the degree of displacement 

differed between cue types (i.e., 60° for non-informative, 120° for switch-to and 180° for 

switch-away cues). However, if the cue-locked positivity is affected by degree of cue 

displacement, there should be correspondence between the angular displacement of the cue 

and D-Pos1 amplitude (i.e., non-informative < switch-to < switch-away). This was not the 

case in the present data. 

Therefore, the D-Pos1 component appears to reflect a process that is activated by 

cues that validly signal that the previously active task-set will not be relevant to the next 

target and, consequently, that there will definitely be a switch in task on the next target (i.e., 
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switch-to and switch-away cues), even when the cues do not specify which task will be 

relevant. Importantly, the process reflected by the D-Pos1 is not activated by cues that 

signal that the previously active task-set may (i.e., non-informative cues) or will (repeat) be 

relevant to the next target. This finding supports the contention that partially informative 

cues trigger some anticipatory reconfiguration process.  

Replicating Nicholson et al.’s (2006b) finding, switch-away trials resulted in longer 

RT than did switch-to trials. This indicates that the additional information regarding the 

identity of the upcoming task afforded by switch-to cues led to greater anticipatory 

reconfiguration than on switch-away cues. However, mean RT did not differ between 

switch-away and non-informative switch trials. This result appears to contradict the idea 

that participants use switch-away cues to partially prepare for a switch trial. If preparation 

is a time-consuming process, then it should take longer to complete on non-informative 

switch trials than on the partially informative switch-away trials, and hence mean RT 

should be less in the latter condition.  

This argument fails to take account of the fact that the non-informative switch trials 

had a reliably higher error rate than did switch-away trials. The error difference raises the 

possibility that participants used the information provided by switch-away cues to engage 

in a speed-accuracy tradeoff. That is, because switch-away cues provide certainty that the 

upcoming trial will require a switch in task, and hence will be more difficult and potentially 

error prone, participants may have required a higher standard of evidence before making a 

decision in order to reduce the possibility of making an error. If that were the case, the 

same higher standard of evidence would be expected to be applied on switch-to trials. Mean 

RT in the switch-to condition could still be less than in the non-informative switch 

condition if the extra time required to make a decision using a higher standard of evidence 
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on switch-to trials was less than the time saved by being able to complete reconfiguration in 

the cue-target interval. In the switch-away condition, in contrast, the lesser amount of time 

saved by partial reconfiguration could be canceled out by the extra time taken to make a 

decision, so that overall mean RT in the switch-away and non-informative switch conditions 

would be equal.  

Fortunately, as we describe next, it is possible to directly test our speculation about 

speed-accuracy tradeoff differences between cue conditions. Speed-accuracy tradeoff is a 

pervasive phenomenon in choice tasks ranging from simple stimulus categorization to 

recognition memory (for a summary, see Luce, 1986, pp. 237–245). It has been intensively 

studied and it is now almost universally agreed that it can be explained in detail by 

evidence accumulation models. Evidence accumulation models of the decision process 

provide a detailed account of the mechanism by which speed-accuracy tradeoffs is 

accomplished. They also predict that a speed-accuracy tradeoff will have a quite specific 

effect on aspects of the RT distribution, such as RT variance, which are neglected by an 

analysis of mean RT alone. Hence, by fitting an evidence accumulation model to our data 

we are able to provide a rigorous test of whether the lack of a mean RT difference between 

non-informative and switch-away trials is a by-product of speed-accuracy tradeoff. 

 

 

4.2 Evidence Accumulation Model Analysis 

Evidence accumulation models fractionate mean RT within two-choice response 

tasks into two independent components: decision time and nondecision time. Decision time 

includes processes directly involved in choosing a response to the current stimulus - that is, 

stimulus categorization and response selection. Nondecision time includes the time to 
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complete processes that do not directly contribute to the decision, typically including 

processes such as stimulus encoding and response activation/execution. Evidence 

accumulation models assume that a decision is reached by accumulating (i.e., repeatedly 

sampling and combining) stimulus information about a choice until the evidence favoring 

one choice exceeds the evidence favoring other choices by a criterion amount. Decision 

time, therefore, is determined by the conservativeness of the evidence criterion and the rate 

of evidence accumulation. A speed-accuracy tradeoff occurs when participants differ 

between conditions in conservativeness (i.e., maintain a different evidence criterion). 

Wagenmakers, van der Maas and Grasman (2007) advocated the use of parameter 

estimates from a particular type of evidence accumulation model, a diffusion model, to 

account for speed-accuracy tradeoff. Their EZ diffusion method estimates three parameters. 

The evidence accumulation or drift rate (v) and the evidence criterion (a) parameters 

together determine decision time (dt). The remaining portion of the RT that is due to 

nondecision processes is determined by the Ter parameter. We applied a more recent 

development of this approach, the EZ2 method (Grasman, Wagenmakers & van der Maas, 

in press), which also estimates a decision bias parameter, although this parameter is not of 

substantive interest in the present application.  

Within task-switching paradigms, when reconfiguration is completed before target 

onset (i.e., anticipatory reconfiguration with predictable switch cues and long cue-target 

interval), there is no effect of reconfiguration on RT and any residual RT switch cost is 

assumed to reflect post-target processes related to S-R priming. However, if reconfiguration 

is not completed before target onset (i.e., very short cue-target interval and/or unpredictable 

switch trials), RT would increase by the amount of time required to complete 

reconfiguration, as the initiation of decision processing will be delayed. Such delays would 
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increase estimates of the nondecision time (Ter) parameter. In our paradigm, switch-to trials 

allow complete reconfiguration before target onset and so there should be little or no 

contribution by reconfiguration to nondecision time. In contrast, on non-informative switch 

trials, reconfiguration should make a large contribution to nondecision time. If switch-away 

trials involve partial reconfiguration, nondecision time should be less in switch-away than 

in non-informative switch trials.  

In summary, we predict that nondecision time should be shortest for switch-to trials, 

intermediate for switch-away trials, and longest for unprepared non-informative switch 

trials, since the amount of reconfiguration that can be completed in the cue-target interval 

decreases across these conditions. Predictions related to nondecision time for the repeat cue 

trials are less constrained, because the reconfiguration process itself may be primed in this 

condition. Generally, we would expect repeat trials to have a shorter nondecision time than 

all other trial types, because they require no reconfiguration or, at least, minimal 

reconfiguration. Switch-to trials may be an exception, since the relatively long cue-target 

interval may have been sufficient to complete preparation to the same level as that on 

repeat trials.    

Decision time is determined by criterion and drift rate; a longer decision time may 

result from a high response criterion, a lower drift rate, or a combination of both. Hence, if, 

as we suggested, participants use a more cautious (larger) evidence criterion in the switch-

away than the non-informative switch condition, a longer decision time would be predicted 

in the former condition. We argue that it is the fact that these two conditions have opposite 

effects on nondecision and decision time that can account for our finding of no difference 

between them in mean RT. As both switch-to and switch-away cues certainly indicate the 

next trial will be a switch, no difference in criterion or decision time is predicted between 
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these conditions. However, we predict that switch-to trials will have a shorter mean RT 

because of their shorter nondecision time. 

 

 

4.2.1 Method 

Wagenmakers et al.’s (2007) EZ diffusion method estimates three separate 

parameters for each response to a task, the evidence accumulation or drift rate (v),  the 

evidence criterion (a), which together determine mean decision time (dt), and a parameter 

for the remaining portion of mean RT, nondecision time (Ter). These three parameters are 

estimated analytically on the basis of three aspects of the data for each response: accuracy 

and the mean and variance of RT for correct decisions. The EZ method assumes that 

decisions are unbiased, whereas the more recently developed EZ2 method (Grasman et al., 

in press) does not need to make this assumption, since parameter estimates are obtained for 

the entire task, rather than for each response separately. These parameters are: two drift rate 

and two nondecision time parameters (one for each response), the criterion for one of the 

responses (a; the criterion for the other response is assumed to be zero without loss of 

generality) and the starting point for evidence accumulation (z). These size parameters are 

estimated on the basis of six data points, accuracy and the mean and variance of correct RT 

for each response.  

Hence, as is the case for EZ, the number of parameters estimated equals the number 

of data points, but for EZ2, the equation relating the two cannot be solved analytically. 

However, the EZ2 equation implicitly defines a unique solution that can be easily and 

reliably found by numerical methods using programs provided by Grasman et al. (2009). 

Our use of EZ2 was not so much motivated by its affording an estimate of response bias 
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(which we do not report, since there was no evidence of bias or differences in bias across 

conditions) as by the fact that it requires fewer assumptions and is in our experience more 

robust and efficient than EZ estimation, and because it corresponds more directly to the 

diffusion model’s assumption that one evidence accumulation process is responsible for 

both choices. 

In our experiment, mean RT showed a reliable difference between tasks and a 

reliable interaction between task and response hand. Since EZ2 analysis depends on 

variance estimates, and these can be distorted by pooling over conditions that differ in their 

mean, we applied the diffusion analysis to data broken down by task and response as well 

as by trial type. This resulted in small sample sizes for correct responses (less than 20) for 

some conditions in some participants.  

In order to make mean and variance estimates robust, we based them on fits of the 

Ex-Gaussian distribution to correct RT deciles (Heathcote, Brown & Mewhort, 2002; see 

Wagenmakers, van der Maas, Dolan & Grasman, 2008, for a related approach to EZ 

estimation). We also based EZ2 estimates on the robust accuracy measure recommended by 

Snodgrass and Corwin (1988). In a few cases (<1%), estimates of Ter were too small to be 

plausible (<100ms). In such cases, we obtained parameter estimates by solving the EZ2 

equations under the constraint that Ter>100ms. Note that without constraint EZ2 

parameters produce a perfectly accurate account of accuracy and correct RT mean and 

variance. Although this is not necessarily the case when a constraint is imposed, the effect 

of the constraint used on our data was negligible, so that the account of these measures 

remained essentially perfect. 
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Figure 4.5: Cumulative distribution functions created by averaging data deciles over participants 
and conditions, and similarly averaged deciles produced by Ex-Gaussian and EZ2 fits. 

 

 

 

Since the Ex-Gaussian usually provides an excellent descriptive account of RT 

distribution, our methods also provided a gold standard against which to compare the 

diffusion model’s account of the data, thus addressing concerns raised by Ratcliff (2008) 

about EZ estimation. A qualitative check provided by inspecting Figure 4.5 shows that for 

our data, EZ2 estimation produced an accurate account of the full distribution of correct 

RT, which was only slightly inferior to that of the Ex-Gaussian. A small disadvantage is to 

be expected given the diffusion model accounts for accuracy as well as RT using the same 

number of parameters as the Ex-Gaussian, which only accounts for RT.  
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4.2.2 Results 

EZ2 parameter estimates were derived for each of the 23 participants from 

Experiment 1. Mean RT, RT variance and error rate were used to estimate the nondecision 

time, evidence criterion and drift rate parameters at each level of task and trial type. These 

parameter estimates were analyzed using 3 (task: letter, digit, color) x 5 (trial type: repeat, 

switch-to, switch-away, non-informative repeat and non-informative switch) repeated 

measures ANOVA, followed by five simple comparisons for trial with family-wise error 

rate adjusted at α=.01. As well as the drift rate, criterion and nondecision time parameters, 

we analyzed decision time. We present result for all four measures for clarity, but it is 

important to keep in mind that these measures are related, since decision time is a function 

of the drift rate and criterion, and decision time and nondecision time sum to mean RT. 

Task did not interact with trial type in any of these analyses so we report results averaged 

over task (Figure 4.6). As in earlier analyses, five planned contrasts compared repeat trials 

with switch-to, switch-away and non-informative repeat trials, and switch-away trials with 

switch-to and non-informative switch trials. We also will report correlations between EZ2 

parameters and the early cue-locked switch positivity. 
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Figure 4.6: Diffusion model parameters. R = Repeat; N-R = Non-informative Repeat; S-T = Switch 
To; S-A = Switch Away; N-S = Non-informative Switch. Significant differences between 
conditions are shown by solid lines at p<.01. 

 

Figure 4.6a shows that nondecision time varied from 370ms for repeat trials to 

650ms for non-informative switch trials (trial F(4,88)=71.06, p<.001, ε=.673). Nondecision 

time was significantly shorter for repeat trials than for switch-away and non-informative 

repeat trials, F(1,22)=71.41, p<.001, F(1,22)=59.69, p<.001, respectively (although not 

part of the planned set, note that the repeat and non-informative switch trials comparison 

was also highly significant, F(1,22)=213.78, p<.001). Nondecision time did not differ 
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between repeat trials and switch-to trials (F<1.5), but switch-away trials had a significantly 

shorter nondecision time, as compared with non-informative switch trials, F(1,22)=28.49, 

p<.001, and a longer nondecision time as compared with switch-to trials, F(1,22)=112.8, 

p<.001. Larger cue-locked positivity was associated with shorter nondecision time for 

switch-to cues (r=-.397, p<.05) and marginally for switch-away cues (r=-.349, p=.051). 

As shown in Figure 4.6d, response criteria were low on repeat and both types of 

non-informative cue trials. However, criteria were significantly higher for both switch-to 

and switch-away trials (trial, F(4,88)=14.74, p<.001, ε=.465; repeat vs. switch-to, 

F(1,22)=14.07, p=.001; repeat vs. switch-away, F(1,22)=9.73, p=.005). Decision time was 

also significantly affected by trial type, F(4,88)=11.71, p=.001, ε=.341 (see Figure 4.6b). 

Both switch-to and switch-away trials had significantly longer decision time than did repeat 

trials, F(1,22)=18.32, p<.001, F(1,22)=9.14, p=.006, respectively. Decision time was also 

lower for non-informative switch than for switch-away trials, F(1,22)=16.76, p<.001.  This 

can be accounted for by differences in response criterion, F(1,22)=44.06, p<.001, but not 

drift rate, F<1 (Figure 4.6c). Drift rate for repeat trials was significantly higher than for all 

other trial types (switch-to: F(1,22)=62.05, p<.001; switch-away: F(1,22)=27.67, p<.001; 

non-informative repeat: F(1,22)=13.36, p=.001). Larger cue-locked positivity on switch-to 

trials was associated with a shorter decision time (r=-.414, p<.05), lower criterion (r=-

.425, p<.05) and a faster drift rate (r=.366, p<.05). Switch-away cues showed no 

significant correlations between cue-locked positivity and these diffusion measures.   
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4.2.3 Discussion 

The nondecision time findings are consistent with predictions based on our 

assumption that the cues preceding non-informative switch, switch-away and switch-to 

trials results in differential degree of activation of an anticipatory reconfiguration process. 

Partially informative switch-away cues, which provided certainty about an upcoming task 

switch without indicating which task will be active, offered a reliable behavioral advantage 

over non-informative cues that were equally likely to be followed by a switch or repeat 

trial. In particular, this advantage was evident in nondecision time
2
, a latent measure that, in 

the context of cued task-switching, is affected by the degree of anticipatory reconfiguration 

afforded by the cue. In the present paradigm, the only common information provided by 

switch-to and switch-away cues and not afforded by non-informative cues is that the task 

that was relevant on the previous trial will not be repeated. The finding that this information 

resulted in a reduction in nondecision time suggests that both switch-away and switch-to 

cues elicit some degree of anticipatory reconfiguration and that this partial preparation 

results in a behavioral advantage over non-informative cues that are equally likely to result 

in a switch or repeat trial.   

 

 

 

                                                   
2 For readers concerned that this behavioural effect is entirely dependent on the diffusion model 
being correct, it is important to note that differences in Ter between conditions equal differences in 
the fastest RTs for those conditions. Hence, an interpretation of these results purely in terms of 
observed behaviour is that switch-away cues reliably speed up the fastest responses relative to non-
informative cues. 
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Just as predicted by our speed-accuracy tradeoff account, response criterion 

adjustment occurred only for cues validly predicting a change in task (switch-to, switch-

away), but not for cues signaling that the task may repeat (non-informative)
3
. This criterion 

adjustment caused decision time to be greater in the switch-to and switch-away conditions 

than the non-informative switch condition. The decision time difference between switch-

away and non-informative cues masked the nondecision time advantage that partial 

preparation afforded to switch-away cues over non-informative switch cues, resulting in no 

observable difference in mean RT.  

This pattern of reduced nondecision time and increased response criterion in the 

switch-away and switch-to conditions may appear counterintuitive. It suggests that 

anticipatory reconfiguration (reflected in reduced nondecision time) resulted in longer 

rather than shorter decision times – a disadvantage, rather than an advantage, of 

preparation. However, seeing this effect as only a disadvantage fails to appreciate the full 

range of behavior displayed by participants, and the task demands which they must satisfy 

in terms of accuracy, as well as speed. The increase in response criterion had the advantage 

of decreasing the probability of an error, which explains why accuracy was higher in the 

switch-away and switch-to conditions than the non-informative switch condition, even 

though the quality of the evidence (drift rate) was the same in all three conditions. By 

setting the criterion as they did, participants were able to achieve greater accuracy in the 

switch-to condition without sacrificing speed relative to the non-informative conditions, 

                                                   
3 As with nondecision time effects, criterion differences correspond to an observable behavioural 
difference. In the case of criterion effects this is RT variance. When drift rate (which also affects 
RT variance) is the same between two conditions (e.g., switch-to and non-informative in our data) 
but one condition has a larger criterion (e.g., switch-to has a greater criterion than non-informative 
in our data) it will also have a larger variance. 
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since the increased decision time cost was canceled by the nondecision time advantage 

afforded by partial preparation.      

 

 

4.3 General Discussion 

Nicholson et al. (2006b) reported an early cue-locked differential switch positivity 

for both fully informative (switch-to) and partially informative (switch-away) cues, 

suggesting a common anticipatory reconfiguration process. They argued that, since the only 

common information provided by these cues was that the previously active task would not 

be repeated, this switch positivity could reflect suppression or disengagement of the now 

irrelevant task-set. However, the absence of a demonstrated behavioral benefit afforded by 

switch-away cues, and the fact that both switch-to and switch-away, but not repeat, cues 

involved a change in spatial position suggested another interpretation – that the early switch 

positivity reflects processing of the change in the spatial position of the cue or repetition 

priming for the repeat cue. In the present study, we tested this alternative explanation by 

including non-informative cues that, like switch-to and switch-away cues, involve a change 

in spatial position (and therefore do not involve cue identity repetition) but, unlike switch-

to and switch-away cues, are not associated with any strategic benefit in suppressing the 

previously active task-set. The ERP data showed that the early posterior cue-locked D-Pos1 

was elicited for both switch-to and switch-away cues but not for non-informative cues. 

Therefore, D-Pos1 does not simply reflect processing of a change in cue position.  

These results indicate that partially informative cues trigger a subcomponent of an 

anticipatory reconfiguration process represented by the D-Pos1 to both switch-to and 

switch-away cues. Surprisingly, switch-away cues signaling that the upcoming trial requires 
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a change in task-set, without specific information about which task-set to prepare, did not 

appear to provide any advantage in speed, relative to non-informative cues signaling that a 

change may or may not be necessary. However, error scores provided evidence that the 

failure to find a switch-to advantage in mean RT was due to a speed-accuracy tradeoff. 

We examined the issue of speed-accuracy tradeoff by using the EZ2 analysis 

method (Grasman et al., 2009), which combines measurements of response accuracy with 

measurements of response speed and variability in order to fit an evidence accumulation 

model of the task decision process. Critically for our purposes, this model produces 

estimates of the criterion amount of evidence required to make a decision and of the mean 

time to complete nondecision and decision processes. Diffusion model analyses provided 

evidence of a behavioral effect on RT of the partial information provided by switch-away 

cues. Specifically, nondecision time, a latent measure that includes the time to complete 

reconfiguration after target onset, did not differ between repeat and switch-to cues, but 

increased progressively across switch-to, switch-away and non-informative cues. Hence, 

cues that allowed full reconfiguration showed no effect of reconfiguration on nondecision 

time, whereas cued that allowed partial reconfiguration provided a nondecision time 

advantage over cues providing no information about the likelihood of a switch trial.  

These results are consistent with the idea that the partial preparation afforded by the 

information that the previously active task-set will not be repeated is a time consuming part 

of the reconfiguration process. Nondecision time was negatively correlated with the 

amplitude of the early cue positivity, suggesting that activation of the processes reflected in 

this early switch positivity resulted in greater anticipatory reconfiguration. Importantly, the 

diffusion analysis demonstrates that behavioral results are consistent with the interpretation 

of D-Pos1 as being representative of preparation for an upcoming change in task-set. These 
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data provide a crucial link between behavioral and ERP data that does not exist when only 

mean RT is considered. 

Although these findings strongly support the contention that partially informative 

cues trigger some anticipatory reconfiguration process, there are at least two possible 

interpretations about the precise nature of this process. One possibility is inhibition of the 

previously relevant task-set, which both switch-to and switch-away cues indicate will not be 

relevant on the current trial (Nicholson et al., 2006b). Another is activation of one or more 

task-sets that the cues indicate are likely to be relevant for the following target
4
. In the latter 

case, switch-away cues could either activate both possible task-sets or randomly activate 

one of the two possible task-sets. If both possible task-sets are activated, it seems likely that 

cue-locked waveforms would reflect greater processing for switch-away trials than switch-

to trials. Hence, cue-locked differentiation between repeat and switch trials (i.e., D-Pos1) 

should be larger or more prolonged for switch-away cues than for switch-to cues (i.e., 

switch-to trials = one task-set activation, switch-away trials = two task-set activations). 

Furthermore, non-informative cues are also likely to activate the non-repeat task-set. 

Therefore, the cue-locked positivity should show amplitude changes so that repeat<switch-

to=non-informative< switch-away. This order is not compatible with the pattern of 

differences observed in cue-locked waveforms.  

If switch-away cues activate only one of the two cued task-sets in a random or semi-

random fashion, the behavioral advantages that we found for switch-away over non-

informative cues are difficult to understand. Since both types of cues afford the same level 

of uncertainty reduction about the nature of the upcoming task, it seems likely that both will 

be used to activate the corresponding task-sets in the same way. If this were the case then 

                                                   
4
 We thank an anonymous reviewer for this suggestion. 
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there should be no behavioural advantage for switch-away trials over non-informative trials, 

which is not what was observed. It remains possible, however, that the task-set activation 

account is correct if participants only, or more efficiently, use switch-away cues for task-set 

activation, although it is unclear why this might be the case. 

The alternative interpretation (Nicholson et al., 2006b) is that anticipatory task-set 

reconfiguration is a multi-component process that encompasses both inhibition of the 

previously active task-set, reflected in the early D-Pos1, and activation of the now relevant 

task-set, reflected in the later D-Pos2. Variation across switch-to, switch-away and non-

informative cues in both D-Pos1 and nondecision time is compatible with a process of 

suppression or inhibition of the previously active task-set, which may be conceptualized as 

being similar to the idea of disengagement of attention to spatial location invoked in cued 

spatial attention tasks (e.g., Posner, 1980; but see Cohen, Romero, Servan-Schreiber, & 

Farah, 1994). This interpretation is strengthened by the finding that the amplitude of the 

early cue-locked positivity for both switch-to and switch-away cues was inversely related to 

mean RT and nondecision time, suggesting that greater anticipatory reconfiguration, which 

we argue involves inhibition of the irrelevant task-set, leads to faster RT by reducing 

nondecision time.  

The evidence accumulation (diffusion) model analysis provided not only evidence 

for a behavioral benefit arising as a result of task-set inhibition but also a plausible 

explanation of why this behavioral benefit is not evident in mean RT measures. 

Specifically, model parameters indicated that the nondecision time advantage offered by 

this partial preparation was not evident in mean RT because it was counteracted by another 

process that was also activated by cues that provided certainty of an upcoming switch in 

task, which resulted in an increase in the decision time component of RT. Estimates of the 
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criterion amount of evidence required to make a decision indicated that participants 

responded to cues that provided certainty of an upcoming switch in task (i.e., switch-away 

and switch-to cues) by requiring a higher standard of evidence, resulting in slower but more 

accurate decision for switch-away than for non-informative switch trials.  

This more fine-grained analysis of the behavioral data produced results that, in 

contrast to traditional approaches, are able to provide a unified explanation of both 

accuracy and speed. The fact that switch-to and switch-away cues were associated with both 

a reduction in nondecision time and an increase in evidence criterion suggests third 

interpretation of the anticipatory preparation process reflected in the early cue-locked 

positivity. Specifically, it is possible that D-Pos1 reflects the process of increasing the 

evidence criterion and that this is a time-consuming process that contributes to nondecision 

time. When this process can be completed before target onset, D-Pos1 is elicited in the cue-

stimulus interval, and nondecision time is reduced. When it is completed after target onset, 

D-Pos1 is elicited after target onset and nondecision time is higher. Although this 

explanation is compatible with most of our results, it predicts that evidence criterion should 

be higher for all switch trials, but this was not the case for non-informative switch trials. 

This account is also not easily reconciled with the fact the target-locked positivity was 

elicited for both non-informative switch and non-informative repeat trials, even though 

neither showed an increase in evidence criterion. Furthermore, it predicts that the amplitude 

of the early cue positivity will be associated with a higher evidence criterion for both 

switch-to and switch-away cues. However, a larger early cue positivity was associated with 

faster nondecision time and lower evidence criterion, the latter being significant only for 

switch-to cues.  
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In conclusion, we have replicated evidence for an early cue-locked positivity which 

is elicited by cues that provide certainty of an upcoming switch in task. We provided strong 

evidence that this positivity is associated with an anticipatory component of the task-set 

reconfiguration process and with a behavioral benefit in the nondecision component of RT. 

We have identified a number of alternative interpretations of this process and have shown 

that most fail to explain the full set of behavioral and ERP data. It seems to us arguable, 

therefore, that although the data do not provide direct evidence for task-set inhibition as a 

component of anticipatory task-set reconfiguration, this interpretation provides the most 

plausible and comprehensive account of the data.  

More broadly, the finding that simple behavioral measures and ERP measures may 

lead to theoretically opposed interpretations of the underlying cognitive processes suggests 

that such simple behavioral measures alone may be limited. We argue instead, that more 

sophisticated model-based analyses of behavior, combined with ERP and other 

neuroimaging measures, are likely to be more successful in providing a full account of all 

relevant processes (see also Forstmann et al., 2008a).  
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Chapter 5: Switch-related and general preparation processes in task-switching: Evidence 

from multivariate pattern classification of EEG data
5
 

 

The ability to deal with constantly changing demands within our environment is 

aided by external cues that allow preparation in anticipation of change. In cued task-

switching paradigms, changing tasks involves a switch cost, i.e., poorer performance on 

task switch relative to task repeat trials (e.g. Meiran, 1996). This switch cost reduces with 

increased opportunity for preparation, indicating that switch trials require additional or 

more time-consuming preparation compared to repeat trials. However, it is unclear whether 

switch preparation involves stronger engagement of the same preparation process needed 

for task repetition or a distinct process.  

Within the cue-to-target interval, event-related potentials (ERPs) show an early 

centro-parietal positivity that is greater for switch than repeat trials (e.g. Kieffaber & 

Hetrick, 2005; Nicholson et al., 2005) and a frontocentral pre-target negativity that is 

similar for both trial types (e.g. Nicholson et al., Jamadar et al., 2010). Consistent with a 

switch-related preparation process, the early cue-locked positivity is elicited only by cues 

that predict a definite change in task, regardless of whether they identify the upcoming task 

(Karayanidis et al., 2009). Moreover, consistent with a general task-readiness preparation 

process, the pre-target negativity is similar for cues that identify the upcoming task, 

regardless of whether the task repeats or changes. Similarly, Karayanidis et al. (2011) 

showed that cue-locked positivity amplitude varies as a function of RT only for switch 

                                                   
5 Published as Mansfield, E. L., Karayanidis, F. & Cohen, M. X. (2012). Switch-related and general 

preparation processes in task-switching: Evidence from multivariate pattern classification of EEG 
data. The Journal of Neuroscience, 32, 18253-18258. 

 



 123 

trials, while pre-target negativity amplitude varies as a function of RT for both switch and 

repeat trials. However, this evidence for a switch-related preparation process relies on null 

findings, e.g. the absence of a significant cue-locked positivity for cues that do not predict a 

definite switch trial (Karayanidis et al., 2009).  

We provide new evidence for a switch-related preparation process that is temporally 

and spatially distinct from a general preparation process. A novel multivariate pattern 

misclassification approach was developed, to identify core preparation processes based on 

common frequency band-specific topographical patterns in EEG activity. Four cue types 

provided varying degrees of specificity about the task relevant to the upcoming target. 

Repeat cues indicated a definite task repeat. Switch-to cues indicated a definite task switch 

and identified the relevant task. Switch-away cues also indicated a definite task switch but 

not task identity. Non-informative cues indicated that a task repeat and task switch were 

equally likely. Thus, some cues specified an upcoming switch trial with certainty (switch-

to, switch-away), whereas other cues specified the upcoming task with certainty (repeat, 

switch-to). We hypothesized that (1) a switch-related preparation process would be 

evidenced by switch-away trials being misclassified as switch-to trials in the latency range 

of the cue-locked positivity and (2) a task readiness process would be evidenced by repeat 

trials being misclassified as switch-to trials in the latency range of the pre-target negativity. 

These effects were expected to be represented in the alpha band (e.g. Serrien et al., 2004; 

Sauseng et al., 2006) and at frontal and parietal areas, respectively (Ruge et al., 2013).   
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5.1 Methods 

 

5.1.1 Participants 

Twenty-three participants (18 female, 21.3 +/- 3.5 years) were included in this 

analysis. The study was approved by the University of Newcastle Human Research Ethics 

Committee. 

 

5.1.2 Stimuli and Tasks 

Detailed information about stimuli used can be found in the article by Karayanidis 

et al. (2009). A circle (5º diameter) was divided into six segments, with two adjoining 

segments corresponding to letter (vowel/consonant), digit (odd/even), and color (hot/cold) 

classification tasks (see Figure 5.1a). On each trial, a target was presented in one segment. 

Targets consisted of a pair of characters (letter, number, non-alphanumeric symbol) 

presented either in gray or in color. Each target consisted of one dimension that was 

relevant to the current task (e.g., digit mapped to left hand response), one that was 

incongruently mapped to the currently relevant task (e.g., letter mapped to right hand 

response), and one neutral dimension (e.g., target presented in gray). Targets for each task 

(see Figure 5.1b) were selected pseudorandomly, so as to avoid immediate repetition. The 

target remained for 5s or until a response was emitted (response-cue interval 400 ms). Data 

were pooled across tasks.  
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Figure 5.1: Paradigm. (A) Mapping of the three tasks to each of the main segments of the circle. 
(B) Target sets associated with each task. (C) Example cue-target sequence, showing the cue 
highlighting two adjacent segments, followed by the target appearing within one of the cued 
segments. Words are shown here to illustrate the task and were not seen by the participant.  

 

Four cue types were defined by the position of a highlight that surrounded two 

adjoining segments of the circle and preceded target onset by 1000ms (Figure 5.1c). On 

repeat trials, the cue highlighted segments corresponding to the same task as the preceding 

trial, predicting a definite task repeat. On switch-to trials, the cue highlighted segments 

corresponding to one of the other tasks, predicting a definite switch to that task. On switch-

away trials, the cue highlighted two adjoining segments corresponding to the two tasks that 

were not completed on the previous trial, predicting a definite task switch but not the task 

to be switched to. On non-informative trials, the cue again highlighted two adjoining 

segments, one corresponding to the task just completed and one to another task, indicating 

that a repeat of the previous task or a switch to this other task was equally likely. For both 

switch-away and non-informative cues, the location of the target defined which task would 

be performed. The same cue could not appear on more than three successive trials. 
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5.1.3 Procedure and EEG Recording 

Training included 1400 trials over two sessions on both single-task and mixed-task 

blocks. The EEG testing session included nine blocks of 96 trials, separated by rest. 

Immediate auditory error feedback was delivered. Mean RT and error rate were presented 

after each block. EEG was continuously sampled at 2048 Hz/channel from 64 scalp 

electrodes, left and right mastoids, nose and left supraorbital and infraorbital ridge and 

outer canthi of the eyes using a Biosemi ActiveTwo system relative to common mode sense 

(CMS) and driven right leg (DRL) electrodes. 

 

5.1.4 Data analysis 

The first five trials of each block, error trials, and trials following an error were 

excluded from analysis. Fast (<200 ms) and slow (>3SD above participant’s mean RT) 

trials were also excluded. Greenhouse-Geisser correction was applied when appropriate 

(Vasey & Thayer, 1987).  

 

5.1.4.1 EEG pre-processing.  

EEG data were high-pass filtered at 0.5 Hz and epoched from 1.0 s before to 3.5 s 

after each cue. All trials were visually inspected and those containing facial EMG or other 

artifacts not related to blinks were manually removed. Independent components analysis 

was computed using EEGLAB software (Delorme & Makeig, 2004) and components 

containing blink/oculomotor artifacts or other artifacts that could be clearly distinguished 

from brain-driven EEG signals were subtracted from the data. All data were current-source-

density (CSD) transformed prior to analyses (Kayser & Tenke, 2006). CSD is a high-pass 

spatial filter that minimizes volume conduction by removing large spatially broad (and 
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therefore likely volume conducted) activities (Srinivasan et al., 1996; 2007, also called 

scalp Laplacian). This sharpening filter limits spatial autocorrelation as well as the spread 

of any residual oculomotor artifacts, making the data more amenable to spatial multivariate 

pattern analysis based on local topographical features. This approach enhances spatial 

resolution but does not offer precise anatomical localization.  

 

5.1.4.2 Power analysis.  

Analyses were performed in Matlab. Single-trial data were first decomposed into 

their time-frequency representation by multiplying the power spectrum of the EEG 

(obtained from the fast-Fourier-transform) by the power spectrum of complex Morlet 

wavelets (
)*2/(2 22  ttfi ee 
, where t is time, f is frequency, which increased from 2 to 50 Hz in 

20 logarithmically spaced steps, and s defines the width of each frequency band, set 

according to n/(2f) where n increases logarithmically from 3 to 14 as a function of 

frequency), and then taking the inverse fast-Fourier-transform. From the resulting complex 

signal, an estimate of frequency-band-specific power at each time point was defined as the 

squared magnitude of the result of the convolution Z (real[z(t)]
2
 + imag[z(t)]

2
). Power was 

normalized using a decibel (dB) transform (dB power = 10*log10[power/baseline]), where 

baseline activity was taken as the average power at each frequency band, averaged across 

conditions, from -300 to -100 ms pre-cue. Power was calculated for each electrode, 

separately for repeat, switch-to and switch-away trials, relative to non-informative trials. 

Statistics on time-frequency changes in power were performed by map-wise t-tests, 

along with a combination of pixel- and cluster-level thresholding. Individual pixels in time-

frequency space were considered significant at p<0.01. Clusters of pixels were considered 
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significant if there were more pixels per cluster than expected under the null hypothesis at 

p<0.05. Cluster size was obtained via permutation testing (Nichols & Holmes, 2002). T-

values were computed based on a randomly shuffled subject-condition mapping, and the 

statistical map was thresholded again. This time, the number of pixels in the largest supra-

threshold cluster was stored. This was repeated 500 times, generating a distribution of 

maximum cluster sizes under the null hypothesis. The cluster threshold was defined as the 

standardized distance from the mean of the maximum cluster distribution corresponding to 

p<0.05. 

 

5.1.5 Multivariate pattern analysis 

This analysis entailed constructing a set of local electrode weights based on local 

topographical differences between activity elicited during switch-to vs. non-informative 

conditions, and then testing whether those weights could be used to distinguish 

topographical patterns associated with repeat and switch-away conditions. The following 

procedure was done separately for each subject. The classifier was first trained to 

distinguish patterns associated with switch-to and non-informative trials. Switch-to cues 

allow preparation for both a switch in task and the upcoming task itself, whereas non-

informative cues do not elicit either of these preparation processes. Thus, these cues 

demand the greatest and the least amounts of preparation, respectively. The first step 

created a set of topographical weights based on differences in local spatial patterns between 

switch-to and non-informative trials. Weights were calculated based on a cluster including 

the central electrode and the seven immediately surrounding electrodes (fewer electrodes 

were used near the edges of the EEG cap; no analysis entailed fewer than 4 electrodes). At 

each eight-electrode cluster, the mean activity across electrodes for each condition was 
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subtracted to ensure that effects could not be attributed to overall amplitude differences 

between conditions. However, even with such amplitude normalization, topographical 

patterns may still not be representative of the precise configurations of source location and 

polarity (Urbach & Kutas, 2002). After the multivariate analysis was applied to this cluster 

(see below), another electrode was taken as the central electrode, and the process was 

repeated.  

Trials were grouped into 20 bins of randomly selected trials and then averaged 

within each bin. This binning procedure increased signal-to-noise and ensured an equal 

number of ‘trials’ for analyses within each subject (this procedure is often used in 

functional MRI multivariate analyses, e.g., Kahnt et al., 2011). Z-normalized data at each 

time-frequency point were entered into a general linear model (using Matlab’s glmfit 

function with ‘probit’ logistic regression) in which the set of weights was obtained that best 

distinguished switch-to and non-informative conditions. In other words, we constructed, for 

each time-frequency-electrode cluster point, a regression model of the form: 



y  wexe , 

where w is a vector of weights (regression coefficients) for electrodes e, and x is the 

normalized power estimate at each electrode (the intercept is zero because of 

normalization). Y is a Boolean operator coded as 0 for switch-to trials and 1 for non-

informative trials. This is similar to a ‘searchlight’ procedure (Kriegeskorte et al., 2006) 

except that we searched across space, time, and frequency.  

These weights were then taken to the next stage of analysis. Here, the model (via 

Matlab’s glmval function) used these weights to classify repeat and switch-away trials as 

being more similar to switch-to or non-informative trials. Because the model was never 

trained on any of the test conditions (repeat and switch-away), its answers were necessarily 
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“wrong.” Thus, if the model labels, for example, a repeat trial as switch-to at a specific 

time-frequency-electrode cluster point, this indicates that the model considers the local 

spatial pattern during repeat trials to be similar to that during switch-to trials (and that the 

pattern for switch-away trials is necessarily more similar to that during non-informative 

trials). This approach eliminates any potential “double-dipping,” because the model was 

tested on data it did not have access to during training. The misclassification value hence 

reflects the bias in misclassifying repeat as switch-to compared with misclassifying switch-

away as switch-to at each time/frequency/electrode point. Fifty percent performance 

indicates that there is no bias in how repeat vs. switch away trials were misclassified (i.e., 

the model misclassifies repeat and switch-away equally likely as switch-to vs. non-

informative). This is therefore considered chance-level performance, and at the group level, 

misclassification results across subjects were evaluated against 0.5. Pixel and cluster level 

thresholding of time-frequency changes in misclassification values was carried out 

according to the procedure described above for time-frequency changes in power. Average 

misclassification values at each timepoint within the alpha band (8-12 Hz) were submitted 

to one-sample t-tests at p<0.05, with a minimum of 100 ms of contiguously significant 

points (see Figure 5.4, bottom row). 

To ensure that effects were not due to differences between cue types in small 

horizontal eye movements around the circle, we examined ERPs at the horizontal electro-

oculogram channels and found no systematic effects of cue type on eye movements that 

could have contributed to our results. 
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5.2 Results 

 

5.2.1 Behavioral results 

The effect of trial type on mean RT was significant, F(4,88)=38.62, p<.001, 

ε=.320. Responses on repeat trials were faster than on switch-to, F(1,22)=32.29, p<.001, 

switch-away, F(1,22)=51.59, p<.001, and non-informative repeat trials, F(1,22)=61.49, 

p<.001, that is trials where a non-informative cue led to a repeat trial (Figure 5.2, left). 

Switch-to trials were significantly faster than switch-away trials, F(1,22)=37.36, p<.001, 

which, in turn were faster than non-informative switch trials, albeit not significantly so.  

Repeat trials produced fewer errors than non-informative repeat, F(1,22)=21.27, 

p<.001, switch-to, F(1,22)=16.87, p<.001, and switch-away trials, F(1,22)=9.45, p=.006 

(Figure 5.2, right). Non-informative switch trials produced more errors than switch-away 

trials, F(1,22)=9.53, p=.005. 

 

  

Figure 5.2: Mean reaction time (left) and error proportion (right) for each trial type, with standard 
error bars. R = repeat, NI-R = non-informative repeat, ST = switch-to, SA = switch-away, NI-S = 
non-informative switch. 

 

 

 



 132 

5.2.2 Power analyses 

Because this rapid task design lacked a pure “baseline” period, we show time-

frequency results relative to non-informative trials (Figure 5.3a). Figure 5.3b shows time-

frequency plots at FC4, PO7 and PO8, where effects were strongest. At approximately 400 

ms post-cue, significant alpha/theta suppression was observed for repeat cues, especially 

over right fronto-central sites (Figure 5.3). This effect was not evident for switch-to or 

switch-away cues. Instead, during this time window, there was greater alpha power over 

bilateral parieto-occipital electrodes for both switch cues (Figure 5.3a), although this effect 

only reached significance for switch-away cues at left parieto-occipital sites (Figure 5.3b). 

Beginning around 600 ms for repeat cues and 800 ms for switch-to cues, there was an 

increase in alpha and beta power over bilateral parieto-occipital sites (Figure 5.3a). This 

effect was only significant for repeat cues (Figure 5.3b). There was no power increase over 

these electrodes for switch-away cues.  

This pattern suggests that an early preparation process common to both switch-to 

and switch-away cues could be distinguished from a later preparation process common to 

both repeat and switch-to cues in the alpha band. Both processes were evident parieto-

occipitally and were not topographically distinct. 
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Figure 5.3: Power analysis. (A) Topographical plots showing alpha power (8-12 Hz) for repeat, 
switch-to and switch-away cues relative to non-informative cues, within the cue to target interval. 

(B) Time-frequency plots for each cue type relative to non-informative cues, at electrodes FC4, PO7 
and PO8. Significant clusters of pixels are outlined. 
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5.2.3 Multivariate pattern analysis 

The multivariate pattern classification in the alpha band (8-12 Hz) is presented in 

Figure 5.4. The greatest misclassification effects occurred over two electrode clusters 

(Figure 5.4 top): one over right lateral frontal sites (F6, F8, FC6) and another over right 

parietal sites (CP2, P2, P4). Figure 5.4 (middle) shows the full time-frequency 

misclassification plots for each cluster, with significant points outlined. Misclassification 

effects were largest in the alpha band. Misclassification values within this band at the 

frontal cluster (Figure 5.4, bottom) show that, over 300-500 ms, activity on switch-away 

trials was classified as switch-to more than activity on repeat trials was classified as switch-

to. In contrast, at the parietal cluster, from around 850 ms until target onset, activity on 

repeat trials was classified as switch-to more than activity on switch-away trials was 

classified as switch-to. Thus, switch-away cues were misclassified as switch-to cues most 

strongly at right lateral frontal sites around the time of the early cue-locked positivity in 

ERP waveforms, whereas repeat cues were misclassified as switch-to cues at right parietal 

sites during the ERP pre-target negativity.  
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Figure 5.4: Multivariate pattern analysis. Top row: Topographical plots showing misclassification 

of repeat and switch-away activity as switch-to activity within the alpha band. Red = repeat 
misclassified as switch-to, blue = switch-away misclassified as switch-to. Middle row: Time-
frequency plots for right frontal and right parietal clusters, with significant clusters of pixels 
outlined. Bottom row: Misclassification values within the alpha band at right frontal and right 
parietal clusters plotted against time. Values > 0.50 show greater misclassification of repeat as 
switch-to, values < 0.50 show greater misclassification of switch-away as switch-to. Coloured bars 
represent time windows in which misclassification values were significantly different from 0.50. 
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5.3 Discussion 

The decline in behavioural performance when switching tasks compared to 

repeating the same task has been explained as arising from the need to recruit an additional 

process in order to prepare to switch task. However, while ERP studies consistently report 

differential activation for switch relative to repeat trials (see Karayanidis et al., 2010) many 

fMRI studies do not find any differential switch activation (see Ruge et al., 2013), leaving 

unanswered the question of whether a switch-related preparation process can be dissociated 

from more general preparation processes. We used a paradigm that differentiated between 

these processes by including some cues that specified with certainty that the task would 

change (switch-to, switch-away) and some cues that specified with certainty what the 

upcoming task would be (repeat, switch-to). Using a novel pattern classification approach, 

we corroborate previous evidence for temporally distinct switch-related and general task 

preparation processes (Karayanidis et al., 2009; 2011) and show new evidence that these 

processes may be linked to distinct neural generators.  

An initial time-frequency analysis produced evidence for an early process in 

response to cues that predicted a definite task switch and a later process to cues that 

specified the upcoming task. These effects were evident in alpha power changes relative to 

non-informative cues over bilateral parieto-occipital electrodes and at latencies consistent 

with the cue-locked positive component for switch-to and switch-away cues and the pre-

target negativity for switch-to and repeat cues reported in Karayanidis et al. (2009). 

However, still, these analyses do not provide evidence that these component processes are 

associated with different neural generators, as both processes showed increases in power 

over very similar posterior scalp regions. 
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Multivariate pattern analysis provided this critical evidence by reliably 

misclassifying repeat and switch-away trials as switch-to trials at different latencies and 

locations. Patterns of activation associated with switch-away cues were more strongly 

misclassified as switch-to patterns over right frontal sites from 300-500 ms post-cue. Thus, 

cues that specified with certainty that the task would change produced common patterns of 

activation. In contrast, from 850-1000 ms, activation patterns for repeat cues were more 

strongly misclassified as switch-to patterns over right parietal sites. So, fully informative 

cues (i.e., cues that identified the task to be completed) produced similar activation over 

this parietal region, compared to cues that did not identify the upcoming task. In summary, 

distinct patterns of activation were found when the cue predicted a definite change in task, 

compared to when the cue predicted the upcoming task with certainty.  

 

5.3.1 Switch-related preparation 

Consistent with evidence of a cue-locked ERP component that is only elicited in 

response to switch cues (Karayanidis et al., 2009), the current data support a preparation 

process that is engaged specifically on switch trials. The fact that this switch-related 

process is associated with frontal patterns of activation is suggestive of a higher-order 

process that responds to an increased demand for cognitive control. Karayanidis et al. 

(2009) argued that the early switch-related process may reflect an inhibitory function, as 

both switch-to and switch-away cues specify that the previous task set will no longer be 

required. In fact, for switch-away cues, this is the only information that is conveyed by the 

cue. For both of these cue types, suppression of the previous task-set is a beneficial 

strategy, potentially reducing interference from the previous task-set. Although anatomical 

localization on the basis of EEG topographical patterns remains speculative, the finding 
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that the location of this common activation corresponded to right inferior frontal cortex, a 

region strongly linked to inhibitory control (Aron et al., 2004; Jamadar et al., 2010), is 

consistent with this interpretation.  

Alternatively, it could be argued that shifts in spatial attention associated with 

switch-to and switch-away cues could explain this early effect. This explanation appears 

unlikely, as we have previously shown that amplitude differences in the early cue-locked 

ERP component elicited in this paradigm are not consistent with simple spatial reallocation 

of attention (Karayanidis et al., 2009). While this component was elicited for both switch 

cues, it was not elicited for non-informative cues, which also require a shift in spatial 

attention. Thus, the early similarity between switch-to and switch-away activity is more 

consistent with a strategic, switch-related preparation process. 

 

5.3.2 General task readiness 

The later general task preparation process was associated with activation over a 

right parietal region that approximately corresponded to the superior parietal lobule (SPL). 

There is evidence that activation in the SPL varies as a function of task certainty. For 

example, SPL activation was greater when participants had to select between multiple tasks 

than when the task was fixed (Forstmann et al., 2006) and when a bivalent target was 

presented before the task cue resulting in activation of more than one task-set (Ruge et al., 

2009). In the current context, this suggests that the differential activation over the SPL for 

repeat and switch-to cues relative to switch-away and non-informative cues is consistent 

with task-set activation when the cue defines the upcoming task with certainty. This 

preparatory component may reflect a response readiness process, conceptualised as either 
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reinforcing (repeat cues) or re-loading (switch-to cues) the correct set of stimulus-response 

mappings prior to target onset.  

 

5.3.3 Conclusion 

Our novel technique has provided additional evidence for multiple transient 

preparation processes that involve rapidly changing networks in the lead up to target onset. 

We find evidence for sequential switch-specific and general task preparation processes that 

are associated with distinct neural generators, in line with models of preparation that 

include both context-updating and task-specific components (Jennings & van der Molen, 

2005). These findings also highlight the value of using pattern classification approaches to 

identify core components of cognitive flexibility based on similarities in activation patterns 

across experimental conditions.  
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Chapter 6: Strategic adjustment of response caution in task-switching 

6.1 Trial-by-trial response threshold adjustments 

The speed-accuracy tradeoff can be controlled by adjusting one’s degree of 

response caution according to current task demands. As discussed in Chapter 2, response 

caution is indexed in evidence accumulation models of two-choice decision making by a 

response threshold parameter (a)
6
, which estimates the criterion amount of evidence that 

needs to be accumulated for a response to be selected (Figure 2.1). Setting a lower response 

threshold increases the risk of crossing the response threshold prematurely, resulting in 

more risky responding. In contrast, setting a higher response threshold allows more time for 

evidence to accumulate, resulting in more cautious responding.  

In Chapter 4, we found evidence for trial-by-trial adjustment of response threshold 

within the cued-trials task-switching paradigm, with a higher threshold set in response to 

cues that indicated a definite task switch, and a lower threshold set in response to cues that 

indicated a definite task repeat. This suggests that when participants anticipate an easy 

repeat in task, they lower their threshold, as there is little risk of making an error. In 

contrast, when a more difficult switch trial is expected, participants increase their response 

threshold to deal with the higher level of interference on these trials. In addition, response 

threshold was negatively correlated with the amplitude of the cue-locked switch positivity 

for switch-to cues, providing further evidence that this adjustment is part of the preparation 

processes carried out within the cue to target interval. While these are certainly intriguing 

                                                   
6 Note that this parameter is referred to as ‘criterion’ or ‘response threshold’. In the following 
chapters we use the latter terminology for consistency with previous literature on the neural basis of 
the speed-accuracy tradeoff.  
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findings, it is unclear whether these adjustments are similar to those carried out within two-

choice decision making tasks, upon which models of the speed-accuracy tradeoff are based.  

One way in which these two processes may be compared is by examining whether 

they are implemented in common neural networks. Recently, there has been increasing 

interest in the neural basis of the speed-accuracy tradeoff in two-choice decision making 

(Bogacz et al., 2010). Strategic changes in response caution are induced by instructing 

participants to respond either quickly or accurately (e.g. Forstmann et al., 2008a; van Veen 

et al., 2008). These studies have shown that adjustment of response caution between 

accuracy and speed instructions is associated with activation in cortico-basal ganglia 

networks shown to be responsible for action selection (DeLong & Wichmann, 2007; see 

Figure 6.1). However, the exact location and configuration of networks across these studies 

has been inconsistent, giving rise to different theories regarding the neural level at which 

control of the speed-accuracy tradeoff occurs (see Figure 6.1).   
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Figure 6.1: Illustration of the cotrico-basal ganglia-thalamic network. Output corresponds to the globus 

pallidus and substantia nigra pars reticulata. Green lines represent excitatory pathways, while red lines 

represent inhibitory pathways. Blue arrows indicate points at which input could be provided to the system in 

order to modulate response threshold (Figure: Adapted from Bogacz et al., 2010). 

 

 

In some studies, higher-order frontal regions were found to be co-activated with 

cortical regions that have previously been associated with the accumulation or integration 

of sensory inputs towards a response (cortical integrators; see Schall, 2001; Gold & 

Shadlen, 2007). This has given rise to the cortical theory which suggests that, in response 

to instructions emphasising speed over accuracy, cortical integrators receive additional top-

down input that increases their baseline activity (e.g. Furman & Wang, 2008; Ivanoff, 

Branning & Marois, 2008; van Veen, Krug & Carter, 2008). For example, using a Simon 

task, van Veen et al. (2008) examined both sustained baseline activity and transient 

response-related activity in blocks of trials that emphasised either response speed or 
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response accuracy. The DLPFC and inferior parietal lobule (IPL) showed increased 

sustained activity in blocks that emphasised speed. In addition, the IPL showed reduced 

transient response-related activity in response to trials on which speed was emphasised. It 

has been shown that lateral parietal regions, such as the area LIP in the monkey, are 

responsible for the accumulation of evidence towards a sensorimotor decision (e.g. Gold & 

Shadlen, 2002; Roitman & Shadlen, 2002). Thus, can Veen et al. argued that, under speed 

instructions, input from the DLPFC increases baseline activity in the IPL, resulting in less 

transient activation being required to reach the response threshold.  

In contrast, other theories propose that the speed-accuracy tradeoff is controlled at 

the level of the basal ganglia. The striatal theory (Forstmann et al., 2008a) suggests that 

response threshold shifting is modulated by a network incorporating both cortical regions 

and the striatum, which controls the output of the basal ganglia. In their default state, output 

nuclei of the basal ganglia (globus pallidus and substantia nigra pars reticulata) tonically 

inhibit the thalamus and other subcortical regions in order to prevent movement execution 

(DeLong & Wichmann, 2007). Under instructions emphasising response speed, it is argued 

that top-down biasing from cortical regions results in increased activation in the striatum, 

which in turn lessens the inhibitory control that basal ganglia output nuclei exert on the 

brain. Forstmann et al. (2008a) found support for this theory using a model-based 

neuroscience approach that involved relating response threshold estimates to brain 

activation. Instructions emphasising speed over accuracy produced increased activation in 

both the pre-SMA and the striatum. Furthermore, the degree of activation in these regions 

was higher for individuals who had set their response threshold lower for speed as 

compared to accuracy instructions. Forstmann et al. suggested that, under low-risk 

conditions in which minimal conflict is encountered, the pre-SMA sends top-down input to 
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the striatum. This is consistent with evidence that pre-SMA plays a role in the preparation 

of internally-generated action plans (Nachev, Kennard & Husain, 2008). Moreover, 

Forstmann et al. (2010a) found support for the involvement of this network in threshold 

shifting, showing that white matter tract strength between pre-SMA and striatum was 

associated with increased flexibility in threshold setting. 

Finally, the subthalamic nucleus (STN) theory suggests that under instructions 

emphasising accuracy, the STN receives input from medial and lateral prefrontal cortex 

(Frank, Scheres & Sherman, 2007). The STN sends excitatory input to the output nuclei of 

the basal ganglia, such that increased activity in this structure would have the effect of 

slowing or blocking motor output. Thus, the STN may control the speed-accuracy tradeoff 

by allowing more information to accumulate before making a decision. This theory is 

supported by evidence showing that conflict-induced slowing of motor responses is 

accompanied by increased activation in a right-lateralized network incorporating the STN, 

pre-SMA and IFC (Aron, Behrens, Smith, Frank & Poldrack, 2007, Aron & Poldrack, 

2006). In addition, Aron et al showed that increased coherence in organization of white 

matter tracts linking these regions was associated with greater efficiency of response 

inhibition. Further, computational modeling work suggests that when conflict is detected, 

activation in the STN may promote slower and more accurate decision-making (Bogacz & 

Gurney, 2007; Frank, 2006).  

In Chapter 7, we examine whether the regions shown to modulate response 

threshold in response to speed vs. accuracy instructions in two-choice decision making 

paradigms are also involved in threshold adjustment in response to repeat and switch cues 

in the cued-trials task-switching paradigm. Repeat cues may be seen as analogous to 

instructions emphasising speed, as repeating the same task is associated with minimal task-
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related conflict and a low response threshold. In contrast, switch cues are similar to cues 

emphasising accuracy, in that they signal that task-related conflict is likely on the upcoming 

trial and are associated with a high response threshold. We examine whether the striatal 

theory can explain the low response threshold setting in response to repeat cues, and 

whether the STN theory can account for the high response threshold setting in response to 

switch cues. 

 

 

6.2 Intrinsic setting of response threshold 

The previous section focused on strategic trial-by-trial threshold adjustment in 

response to external cueing. However, response threshold may also be influenced by 

intrinsic preferences to be more cautious or more risky. This would affect overall setting of 

response threshold, rather than trial-by-trial response threshold adjustment. We may ask the 

question whether those networks shown to adjust response threshold on a trial-by-trial basis 

also underlie the preference to adopt an overall higher or overall lower threshold setting 

within the cued-trials task-switching paradigm. 

Individual differences in global preferences for risky vs. cautious responding may 

be conceptualized as being similar to individual differences in personality-based 

impulsivity. There is evidence that fronto-striatal networks mediate impulsivity in 

normative samples. For example, using a go/no-go task, Brown, Manuck, Flory and Hariri 

(2006) showed that scores on the Barratt Impulsiveness Scale (BIS; Patton, Stanford & 

Barratt, 1995) were positively correlated with differential activation for no-go relative to go 

trials in bilateral ACC and caudate. They suggested that the greater activation in these 

regions for higher impulsivity individuals indicates a greater need for regulatory processes 
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under conditions of increased conflict (i.e., no-go trials). Other studies have found that 

striatal activation correlates with greater risk preference. For example, Rao, Korczykowski, 

Pluta, Hoang and Detre (2008) compared voluntary with involuntary risk taking using the 

Balloon Analog Risk Task (BART; Lejuez et al., 2002). Under voluntary task risk, 

participants decide whether to continue inflating a balloon for reward but at a risk of losing 

the reward if the balloon bursts. In the involuntary risk-taking condition, participants are 

required to continue inflating the balloon regardless of its size. In the voluntary condition 

only, an increase in balloon size was associated with an increase in activity in bilateral 

frontal regions (DLPFC and ACC) and striatum, suggesting that this fronto-striatal network 

is only activated under risk conditions involving agency.  

These studies suggest that fronto-striatal networks may be associated with not only 

trial-by-trial adjustment of response caution, but also with individual variability in trait 

impulsivity. Chapter 8 takes a multi-modal approach to examine the question of whether 

the networks involved in trial-by-trial updating of response threshold within a cued-trials 

switching paradigm are also responsible for participants’ preference to adopt an overall 

more cautious or overall more risky response regime. More specifically, we examine 

whether structural differences within these networks are related to individual differences in 

overall levels of response caution.  

We also return to a question left unanswered in Chapter 7. In that Chapter, we 

showed evidence for the involvement of distinct cortico-basal ganglia networks in trial-by-

trial adjustment of response caution. However, due to the slow nature of the BOLD 

response, we could only speculate that these networks were activated within the C-T 

interval, as part of an anticipatory threshold control process. Therefore, in this Chapter, we 
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combine structural measures with cue-locked ERPs to examine the association between 

these networks and trial-by-trial, anticipatory threshold setting. 
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Chapter 7: Adjustments of response threshold during task switching: A model-based 

fMRI study
7
 

 

Contextual cues often provide guidance as to the degree of cautiousness required 

in decision making. For example, when there is little traffic on the road, the driver’s 

decision to change lanes can be made quickly, with little sampling of information. 

However, in heavy traffic, a more cautious decision is required as more information must 

be sampled. In evidence accumulation models (e.g. Ratcliff, 1978; Grasman et al., 2009), 

response cautiousness is indexed using the response threshold parameter which represents 

the amount of information that needs to be accumulated before a decision can be made.  

Adjustments in response threshold have been shown to be supported by cortico-

basal ganglia networks (Bogacz et al., 2010). In two-choice response tasks, trial-by-trial 

threshold adjustment in response to instructions emphasising response speed over accuracy 

was associated with higher activation and increased structural connectivity in a network 

including the pre-supplementary motor area (pre-SMA) and striatum (Forstmann et al., 

2008a; 2010a). Forstmann et al. (2008a) argued that, under conditions that emphasise 

speeded responding, the striatum is activated in order to lower the response threshold, 

releasing the motor system from a baseline state of global inhibition and thereby enabling 

rapid execution of a planned action. In contrast, the sub-thalamic nucleus (STN) was shown 

to respond to the need for greater response cautiousness (Frank, 2006; Fleming et al., 

2010). Under high levels of response conflict, excitatory input from cortical regions 

                                                   
7 Published as Mansfield, E. L., Karayanidis, F., Jamadar, S., Heathcote, A., & Forstmann, B. U. 

(2011). Adjustments of response threshold during task switching: A model-based functional 
magnetic resonance imaging study. The Journal of Neuroscience, 31, 14688-14692. 
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(including anterior cingulate cortex, ACC and inferior frontal cortex, IFC) to the STN 

slows the output of the basal ganglia thereby allowing more information to accumulate 

before a decision is made (Aron et al., 2007; Frank et al., 2007). In summary, distinct 

cortico-basal ganglia networks support adjustments in response caution as a function of 

speed compared with accuracy instructions, consistent with basal ganglia models of speed-

accuracy tradeoff (see Bogacz et al., 2010).  

Using a task-switching paradigm, we have shown previously that fully and 

partially informative switch cues produce higher response threshold estimates than repeat 

cues, indicating that participants set a more conservative threshold in response to cues that 

indicate upcoming conflict between action sets (Karayanidis et al., 2009). In this study, we 

test whether the cortico-basal ganglia networks that support adjustment of response caution 

in speed-accuracy manipulations are also involved in adjustment of response threshold as a 

function of trial-by-trial variation in cue informativeness in task-switching. We use an 

anatomical region of interest (ROI) approach that focuses on regions previously shown to 

form specialized networks for the adjustment of response threshold and examine the 

relationship between inter-individual variation in threshold setting and activation within 

these regions. We hypothesise that (a) repeat cues will show greater activation in the pre-

SMA and striatum than switch cues; (b) switch cues will show greater activation in the 

STN than repeat cues; (c) response threshold on repeat cues will be inversely related with 

pre-SMA and striatal activation; and (d) response threshold on switch cues will be 

positively related to STN activation. 

 

 



 150 

7.1 Methods 

 

7.1.1 Participants 

Twenty participants (8 males and 12 females; 25.35 ± 4.8 years, all right-handed, 

$20 reimbursement for travel costs) with no prior exposure to the paradigm underwent an 

initial training session, an ERP test session, and an fMRI/diffusion tensor imaging (DTI) 

test session (ERP and DTI data are not reported here).  

 

7.1.2 Stimuli and Tasks 

Three tasks were defined, each requiring a binary decision: a letter task 

(vowel/consonant), digit task (odd/even), and color task (hot/cold). A circle divided into six 

segments was continuously displayed, with groups of two adjacent segments demarcating 

three task regions (see Figure 7.1a). On each trial, a target appeared in one segment and 

consisted of a pair of characters (letter, number or symbols) presented in color or gray. 

Each target included three dimensions – one was relevant to the current task, one was 

incongruently mapped to the response on the current task, and one was neutral (i.e., non-

alphanumeric character or target presented in grey). The same target could not appear on 

two successive trials. Responses were made with both hands, with response-hand mappings 

counterbalanced across participants. 

Each trial began with a cue that highlighted two of the six segments (see Figure 

7.1a). Four cue types were presented with equal probability (see Figure 4.1 in Karayanidis 

et al., 2009). The same cue could not appear on more than three consecutive trials. Cue to 

target interval (CTI=1000ms) and response to target interval (RTI=1400ms) were fixed. 

Repeat cues indicated that the same task would be repeated. Switch-to cues indicated that 
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the task would change and defined the new task. Switch-away cues indicated that the task 

would not repeat, but did not specify which of the other two tasks would be relevant (i.e., 

the cue overlapped two segments mapped to tasks that were not relevant on the previous 

trial). In this case, the location of the target defined which task would be performed. Non-

informative cues indicated that a switch or a repeat trial was equally likely and were 

included to differentiate between preparatory and cue encoding processes in ERP 

waveforms. They are not included in the present analyses as, by definition, they provide no 

information that could contribute to threshold adjustment in preparation for the upcoming 

target.  
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Figure 7.1: (A) Top: Task-location mapping. Bottom: Example trial sequence (B) Top: ROI masks. 
Bottom: mean contrast value for each cue type. (C, D, E) Significant correlations between threshold 
estimates and pre-SMA, CPJ and STN contrast values, respectively. (F) Coefficients and p-values 
for all correlations (see Methods). Significant correlations are marked with an asterisk. R = repeat, 
ST = switch-to, SA = switch-away.  
 

 

7.1.3 Procedure 

Participants attended three sessions. Session 1 involved task training (768 trials of 

single-task and mixed-task blocks). Training was repeated at onset of session 2. Sessions 2 
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and 3 included fMRI testing (five blocks of 101 trials) or ERP testing (ten blocks of 101 

trials). All but five participants completed the fMRI session first.  

For the fMRI session, participants lay supine in the scanner bore. Stimuli were 

presented against a white background and back-projected onto a mirror that was mounted 

on the head coil (visual angle 5°). Responses and scanner pulses were relayed through a 

custom built response box. Participants were instructed to perform the task as quickly and 

as accurately as possible. Auditory error feedback was provided after each incorrect 

response using MRI-compatible piezoelectric headphones. Mean RT and error feedback 

was given after each block.  

 

7.1.4 Behavioral and EZ2 parameter analysis 

The first five trials of each block, trials associated with or immediately following an 

error, and trials with RT<200ms or RT>3sd from participant’s mean RT were excluded 

from analysis. Response threshold was derived using the EZ2 diffusion model of Grasman 

et al. (2009; cf. Karayanidis et al., 2009). Mean RT, error rate and all model parameters 

essentially replicated our earlier findings (see Table 7.1 for a summary of model 

parameters). Our hypotheses are specific to adjustments in response threshold, and hence 

we only report results relevant to this measure. There was no main effect or interaction of 

session (ERP vs. fMRI) or session order (i.e., ERP/fMRI vs. fMRI/ERP) on threshold. We 

report data from the ERP session because it had twice the number of trials and produced 

stronger effects than the fMRI session.  

Response threshold was analysed using a 3 task (letter, digit, color) x 3 cue type 

(repeat, switch-to, switch-away) repeated measures ANOVA. There was a main effect of 

task (p=.033), with the letter task producing a higher threshold than both the digit and the 
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color task. However, because there was no interaction between task and cue type, all 

analyses were averaged over task. We examined differences between cue types using 

simple comparisons between repeat and each of the switch cues with Bonferroni correction.  

 

7.1.5 Functional magnetic resonance image acquisition and data analysis  

MRI data were acquired using a Siemens Avanto 1.5 T whole-body MR scanner 

equipped with a Siemens quadrature head coil. Anatomical images were collected using a 

T1-weighted MPRAGE protocol (TR = 1980 ms, TE = 4.3ms, flip angle = 15º, 256x256 

matrix, FOV = 256mm, voxel size = 1x1x1mm, 176 slices). Functional images were 

acquired using a T2*-weighted echo planar imaging (EPI) sequence (4 mm slice thickness, 

32 slices, TR = 3700 ms, TE = 70ms, flip angle = 90 º, FOV = 256mm, 64x64 matrix, voxel 

size = 4x4x4 mm, 92 scans per run). EPIs were obtained as ascending slices (with no gap) 

relative to the anterior-posterior commissural line.  

Image pre-processing and statistical analyses were performed using SPM8 

(Wellcome Department of Neurology, London). To allow for T1 saturation effects, the first 

5 images from each run were removed. All images were checked for excessive motion or 

artefact using ArtRepair 

(http://spnl.stanford.edu/tools/ArtRepair/Docs/ArtRepairHBM2009.html); none of the 

images showed evidence of either excessive motion or artefact. Differences in EPI slice 

acquisition timing were corrected using the central slice as reference. Imaging time series 

were then realigned to the first EPI image and a mean realigned EPI image created. Motion 

was corrected using a rigid-body rotation and translation correction (Andersson et al., 

2001). Each participant’s T1 image was co-registered to the mean image and normalized to 

the SPM8 T1 template. The parameters from this transformation were then applied to all 
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EPI images. Accuracy of registration between functional and structural data was assessed 

by visual inspection of the overlay of each individual subject’s mean EPI and normalised 

structural image. Normalized EPIs were then smoothed with a 8mm FWHM Gaussian 

kernel.  

fMRI time series were analysed by fitting a convolved canonical haemodynamic 

response function and its temporal derivative (Josephs et al., 1997) to the onset of the cue 

for each cue type separately. Trials associated with errors were modeled as a separate 

factor, resulting in four experimental regressors (repeat, switch-to, switch-away, errors). 

Realignment parameters were modeled as regressors of no interest to account for motion 

artefact in the data. For each subject, each run was modeled separately.  

 

7.1.6 ROI analysis  

ROIs were selected based on the networks identified by Forstmann et al. (2008a) 

and Frank et al. (2007). Anatomically-defined ROIs were drawn onto the standard-space 

MNI152 template (voxel size 2 x 2 x 2mm) provided with FSLView (Functional MRI of 

the Brain Analysis Group, Oxford University, Oxford, UK; see Figure 7.1b). A pre-SMA 

mask was defined with rostro-caudal boundaries ranging from y = 0 to y = 30, based on the 

mask used by Johansen-Berg et al. (2004). A mask was also drawn over the region joining 

the caudate and putamen (caudate/putamen junction, or CPJ mask). The selection of this 

striatal region was motivated by a previous finding (Forstmann et al., unpublished data) that 

individual peak activations for threshold shifts under speed instructions lie between the 

caudate and putamen. Finally, an STN mask was derived from the structural 7T MRI scans 

identified by Forstmann et al. (2010a). Each mask was drawn bilaterally, resulting in a total 

of six ROIs. These masks were applied to contrast maps comparing each cue type to 
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baseline (repeat > baseline, switch-to > baseline, switch-away > baseline, herein referred 

to as repeat, switch-to and switch-away contrasts, respectively). The mean contrast value 

within each ROI for each participant was extracted using MarsBar version 0.42 (Brett et al., 

2002).  

Mean contrast values for each ROI were analysed with a 2 hemisphere (left, right) x 

3 cue type (repeat, switch-to, switch-away) repeated measures ANOVA. Critical values 

were adjusted using Greenhouse-Geisser correction (Vasey and Thayer, 1987). Significant 

effects of cue were examined using polynomial contrasts and simple comparisons with 

Bonferroni correction. At each ROI, we examined correlations between mean ROI contrast 

value and response threshold value using Pearson’s coefficients with one-tailed values 

given the directional nature of hypotheses and α=0.05 (uncorrected).  

 

 

7.2 Results 

Response threshold showed a significant main effect of cue, F(2,38)=10.76, p=.001, 

with a strong quadratic trend (p=.001; see Table 7.1). This resulted from the large increase 

in response threshold from repeat to switch-to cues, F(1,19)=19.16, p<.001, and a smaller 

marginally significant difference between repeat and switch-away cues, F(1,19)=5.78, 

p=.027.  
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Table 7.1: Means and standard errors for each of the diffusion parameters for each cue type.  

 

 

7.2.1 ROI analyses  

Figure 1b shows ROI masks and activation values in pre-SMA, CPJ and STN. Pre-

SMA activation showed a significant main effect of cue type, F(2,38)=3.87, p=.039, and a 

significant cue type x hemisphere interaction, F(2,38)=4.77, p=.025. All cue types showed 

deactivation relative to baseline, with greater deactivation in the right than the left 

hemisphere, especially for switch cues. The right pre-SMA showed a significant linear 

trend across repeat, switch-to and switch-away cues, F(1,19)=7.27, p=.014, with a 

significant difference between repeat and switch-away cues, F(1,19)=7.27, p=.014, and a 

marginally significant difference between repeat and switch-to cues, F(1,19)=4.73, p=.042. 

Weaker effects in the same direction were evident in the left pre-SMA. 

Activation in the CPJ showed a significant main effect of cue type, F(2,38)=12.32, 

p<.001. A strong linear decline in activation was found across cue type, F(1,19)=28.24, 

p<.001 (see Figure 7.1b), and simple comparisons showed higher activation for repeat 

relative to switch-to cues, F(1,19)=8.58, p=.009, and switch-away cues, F(1,19)=28.24, 

p<.001. These differences were more pronounced in the left CPJ.  

Although there was no significant effect of hemisphere or interaction with cue type 

(p>0.10), the effect of cue type was significant when analysing activation in the left STN 
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alone, F(2,38)=4.85, p=.016. Activation was smaller for switch-away cues than either 

repeat or switch-to cues (F(1,19)=6.45, p=.02, F(1,19)=10.38, p=.004, respectively). While 

the right STN showed a similar pattern of findings, the effects were not significant.  

 

7.2.2 Individual differences  

We examined whether individual variation in cortico-basal ganglia activation was 

associated with variability in response threshold. Figure 7.1, c and f, shows significant 

negative correlations between right pre-SMA activity and response threshold estimates for 

repeat, switch-to and switch-away cues. A significant negative correlation between CPJ 

activation bilaterally and response threshold was found for repeat cues only (Figure 7.1d, 

f). In contrast, the right STN (Figure 7.1e, f) showed positive correlations between contrast 

values and response threshold for both switch cue types. The correlation for switch-to cues 

was weakened with the removal of one participant whose right STN contrast value was an 

outlier, r=0.33, p=.082. There was no significant correlation between contrast values in the 

STN and response threshold for repeat cues. It is important to note that these correlations 

must be interpreted with caution, because they were obtained with one-tailed, uncorrected 

α=0.05. 

 

 

7.3 Discussion 

This study aimed to determine whether cortico-basal ganglia networks shown to 

be responsible for threshold shifts in two-choice decision-making paradigms (e.g. 

Forstmann et al., 2008a) are also involved in threshold shifts in response to cues of 

different information value within a task-switching paradigm. The findings support a role 
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of these networks in the adjustment of response threshold. In addition, they show that these 

models may be extended to higher-order threshold adjustment processes involved in setting 

an appropriate degree of conservativeness for an upcoming task repetition or task switch 

trial. Moreover, individual differences analyses delineate the distinct role of these cortical 

and basal ganglia regions in dynamically adjusting response threshold. 

As predicted, repeat cues showed the greatest activation in pre-SMA. In addition, 

the pattern of cue type effects in the pre-SMA showed that this region was particularly 

sensitive to the degree of information provided by the cue, such that higher activation was 

elicited by repeat cues, followed by switch-to and switch-away cues. The parametric pattern 

of activation in pre-SMA in response to cue information is consistent with a prominent role 

in the preparation of action plans (Cunnington et al., 2005). Repeat cues that signal that the 

previous action set is to be maintained, result in very high readiness for action. Switch-to 

cues that signal that an abandoned action set needs to be reloaded, result in less readiness 

for action and hence less pre-SMA activation than repeat cues. Switch-away cues do not 

signal which action set will need to be loaded and hence show the least preparation for 

action and the least pre-SMA activation.  

In line with the pre-SMA findings, activation in the striatum was also larger for 

repeat cues relative to switch cues. Thus, the fronto-striatal network that is engaged to 

adjust response threshold in response to speed instructions on a two-choice decision-

making task (Forstmann et al., 2008a) was activated here in response to repeat cues, which 

specify with certainty which task will be required and that the demand for cognitive control 

will be low. In addition, a linear pattern of activation was seen across cue types in CPJ, 

similar to that found for pre-SMA. It is interesting to note that this pattern of effects is 

inconsistent with the quadratic pattern of threshold differences between cue types, which 
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showed threshold increasing from repeat to switch-away to switch-to cues. Based on these 

effects, we would have expected less activation in these regions for switch-to relative to 

switch-away cues, but this was not the case. This inconsistency between threshold setting 

for switch cues and activation in these regions again supports the notion that this network is 

activated to adjust threshold in response to repeat cues only. 

To further examine whether this was the case, we tested whether pre-SMA and 

striatal activation was associated with threshold estimates for each participant. Striatal 

activation was negatively correlated with threshold estimates for repeat cues only, 

consistent with Forstmann et al.’s (2008a) finding that increased striatal activation is 

associated with more liberal response thresholds. However, we found negative correlations 

between right pre-SMA activation and threshold estimates for all cue types. Thus, although 

striatal activation was specifically associated with threshold setting in response to repeat 

cues, i.e, when participants were informed that a more liberal response regime could be 

implemented on the upcoming trial, right pre-SMA activation was associated with 

threshold setting in response to any type of cue information.  

This unexpected finding that pre-SMA is related to threshold setting regardless of 

cue type may be explained by previous anatomical tracing studies in monkeys showing 

projections between pre-SMA and dorsolateral prefrontal cortex (DLPFC; Lu et al., 1994; 

Wang et al, 2005), a region coding for goal directed behavior, including the maintenance 

and manipulation of action-sets (e.g. Fassbender et al., 2006; Hester et al., 2007; Jamadar et 

al., 2010). The DLPFC is believed to increase baseline activity in motor-related and 

decision-related networks to control the speed-accuracy tradeoff (van Veen et al., 2008). 

Applied to our findings, this would predict that the DLPFC biases activation in pre-SMA 

according to the degree of cautiousness required for the upcoming task. Thus, pre-SMA 
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may be involved in threshold setting whenever the need for some form of goal-directed 

behavior is required, whether this involves maintenance of a particular task (repeat cues) or 

disengagement from the currently active task (switch-to and switch-away cues).  

Together, our findings suggest that pre-SMA biases the striatum to set an 

appropriate response threshold specifically in situations in which cues call for more liberal 

response regimes. This provides further evidence that these two regions represent a ‘go’ 

pathway that releases the motor system from global inhibition, thereby facilitating 

execution of rapid responses when minimal response conflict is encountered (Mink, 1996). 

Also in line with our hypotheses, we found that activation in right STN was 

positively correlated with threshold estimates for both types of switch cues, but not repeat 

cues. This provides strong evidence that the right STN plays a significant role in setting 

response threshold more conservatively so that more information can be accumulated 

before making a decision (Frank, 2006). These findings are inconsistent with the cue-

related differences in left STN, which showed decreased activation for switch-away cues 

relative to repeat and switch-to cues. The present hemispheric differences offer the 

intriguing possibility of a dissociation in function between the left and right STN in terms 

of responsiveness to conflict. The decrease in activation for switch-away cues in the left 

STN is in line with Frank’s suggestion that excessive uncertainty may result in the STN 

being switched off altogether. In contrast, the right STN appears to be involved in 

increasing response conservativeness when conflict is detected, despite not showing any 

overall change in activation depending on cue information. This discrepancy between 

hemispheres may be explained by the argument of Aron et al. (2007) for a right-lateralized 

network in which the STN is responsible for conflict-induced slowing. Thus, the right STN 

may be specifically involved in setting response criteria to produce slowing of output.  
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Our finding of right STN involvement in adjusting response caution is novel. 

Although Forstmann et al. (2008a) found that response threshold adjustment was related to 

activation in a fronto-striatal network including pre-SMA and striatum, they found no 

relationship with STN activation. This may have been due to the use of a whole brain 

approach, which is less sensitive to activation in small regions such as the STN. In this 

study, we defined a very precise STN mask using 7T structural scans from Forstmann et al. 

(2010a), which allowed for a more sensitive analysis of STN involvement. 

Finally, it should be noted that, although we have discussed differences between 

cue types within these ROIs as relative differences in activation, in some cases we actually 

recorded deactivation relative to an implicit baseline. This effect was especially present in 

the pre-SMA, in which all cue types showed deactivation from baseline. Although, to our 

knowledge, no other study has shown this effect in pre-SMA, other studies have shown that 

nearby medial prefrontal regions, such as ACC, are deactivated in response to external cues 

demanding complex cognitive control (Lawrence et al., 2003; Hester et al., 2004). This 

suggests that the pre-SMA, along with regions in medial prefrontal cortex, may be globally 

inhibited in response to demanding cognitive tasks involving high levels of uncertainty and 

released from inhibition according to the ease with which action sets are retrieved.  

Our findings reveal that prefrontal and basal ganglia regions play distinct roles in 

threshold adjustments depending on cue information. Although pre-SMA is involved in 

more general threshold adjustments in response to any type of information, the striatum and 

STN appear to control threshold adjustment under different circumstances. Bilateral 

striatum is involved specifically in threshold adjustments in situations where the upcoming 

task is well defined in advance of the target, whereas the right STN is involved in shifting 

criteria when conflict between task-sets is anticipated. These findings highlight the 
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importance of considering basal ganglia networks in neural models of executive control 

processes in task-switching (Karayanidis et al., 2010). 
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Chapter 8: Individual differences in strategic adjustments of response caution: 

Combined evidence from diffusion MRI and electrophysiology 

 

Contextual cues provide guidance as to the degree of caution required when 

taking action within a particular situation. For example, when we see that the footpath is 

wet, we may take smaller, more cautious steps, compared to when the footpath is dry. 

Adjustments in response caution have been examined in evidence accumulation models 

using a response threshold parameter, which estimates the amount of evidence that needs to 

be accumulated before one response option is selected over another (Ratcliff, 1978; 

Wagenmakers et al., 2008; Grasman et al., 2009). When a low response threshold is set 

little evidence is required to make a decision, resulting in fast and more error-prone 

responses. In contrast, setting a high response threshold allows more evidence to 

accumulate, resulting in slower and more accurate responses.  

Previous research suggests that cortico-basal ganglia networks are responsible for 

adjustments in response threshold (e.g., Forstmann et al., 2008a; 2010a; van Maanen et al., 

2011; van Veen et al., 2008; see Bogacz et al., 2010 for a review). Forstmann et al. (2008a) 

showed that, on a two-choice decision-making task, instructions emphasizing speed over 

accuracy were associated with increased activation in the pre-supplementary motor area 

(pre-SMA) and striatum. In addition, individuals who set lower, more risky response 

thresholds showed greater activation within these regions than individuals who set more 

cautious thresholds. They argued that under a more liberal response regime the pre-SMA 

sends biasing signals to the striatum, which releases its inhibitory influence over output 

regions of the basal ganglia, resulting in fast responses. Mansfield et al. (2011) supported 

this conclusion by showing that, in a cued-trials task-switching paradigm, activity in these 
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regions was associated with threshold setting in response to cues of different information 

value. Pre-SMA activation was higher for individuals who set a lower response threshold, 

regardless of whether the cue predicted a difficult (task switch) or easy (task repeat) trial. 

The same negative relationship was found between response threshold and striatal 

activation, but only in response to cues predicting a repeat trial. In contrast, the subthalamic 

nucleus (STN) was found to play a role in setting a more cautious response threshold. STN 

activation was higher for individuals who set higher response thresholds in response to 

switch cues only. This finding is consistent with the argument that when increased conflict 

is encountered, frontal regions such as the anterior cingulate and inferior frontal gyrus 

(IFG) provide input to the STN, which in turn slows down motor output (e.g. Frank et al., 

2007). Thus, fMRI data suggest that different networks are involved in threshold 

adjustment depending on whether a task cue calls for a more conservative (switch) or 

liberal (repeat) response regime.  

Diffusion weighted imaging (DWI) – a technique that enables examination of 

white matter microstructure – has provided direct evidence for the existence of distinct 

pathways that enable communication between cortical and basal ganglia regions. For 

example, Forstmann et al. (2010a) showed that greater white matter connectivity between 

the pre-SMA and striatum was associated with lower response threshold setting, supporting 

the suggestion that, under speed stress conditions, the pre-SMA sends a biasing signal to 

the striatum (see also Forstmann et al., 2011a). In contrast, the STN has been shown to 

connect to the IFG (Aron et al., 2007), an area that has been strongly associated with 

conflict-induced slowing (Aron et al., 2003; 2004; Aron & Poldrack, 2006; Forstmann et 

al., 2008b), supporting the notion that these regions form a network that is responsible for 

increasing response caution.  
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8.1 Cortico-basal ganglia network integrity and overall response threshold setting 

In sum, converging evidence from functional and structural imaging studies 

suggests that trial-by-trial adjustments of response threshold associated with more risky and 

more cautious decisions are supported in distinct cortico-basal ganglia networks. Individual 

differences in response threshold adjustment are not restricted to transient trial-by-trial 

adjustment - they can also emerge at the level of setting a sustained baseline for a particular 

task. That is, individual trait differences may determine whether participants have a general 

preference for setting a high or low response threshold, independent of trial-by-trial task 

demands. We investigate the physical basis of this trait difference by asking whether 

individuals classified as cautious or risky show differences in cortico-basal ganglia network 

connectivity.  

Individual differences in impulsivity have been shown to be associated with 

variability in striatal activation. For example, Brown et al. (2006) showed that scores on the 

Barratt Impulsiveness Scale (BIS; Barratt, 1994) were positively correlated with caudate 

activation in response to a modified Go/No-Go task. This evidence suggests that the 

cortico-basal ganglia networks which have previously been shown to drive trial-by-trial 

setting of response threshold may also be responsible for individual differences in general 

preference for more cautious or more risky decision-making.  

In the current study, we examine whether the cortico-basal ganglia regions which 

were differentially associated with cue-related changes in response threshold setting in a 

task-switching paradigm (Mansfield et al., 2011), also show structural differences between 

participants who adopt an overall more risky or more cautious response regime. In line with 

previous studies showing evidence for distinct networks associated with the direction of 
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response threshold adjustments, we expect that individuals who tend to set a lower, more 

risky, response threshold will show increased connectivity in a network incorporating 

striatum and pre-SMA, whereas individuals who prefer to set a higher, more cautious, 

response threshold will show increased connectivity in STN and IFG.  

 

 

8.2 Cortico-basal ganglia network involvement in anticipatory threshold adjustment 

High spatial resolution neuroimaging methods do not allow us to reliably tease 

apart the temporal dynamics of cognitive processes. However, behavioral evidence for trial-

by-trial adjustments in response thresholds in a cued-trials task-switching paradigm has 

been found as a function of both the difficulty of the upcoming trial (Karayanidis et al., 

2009) and the amount of time available to prepare for the upcoming target (Schmitz & 

Voss, 2012). Karayanidis et al. provided electrophysiological evidence that the amplitude 

of an early cue-locked event-related potential (ERP) component was negatively correlated 

with response threshold on task switch trials. So, it appears that, given sufficient time to 

prepare, participants can adjust their response threshold in advance of an upcoming trial, 

depending on how difficult or error-prone they expect this trial to be.  

We take advantage of high temporal resolution of electrophysiological 

measurement to investigate the role of cortico-basal ganglia networks in the anticipatory 

control of thresholds. In particular, we examine whether individual differences in these 

structures are related to the cue-locked ERP correlates of threshold setting (Karayanidis et 

al., 2009). It has been suggested that DWI measures may be able to explain variability in 

ERP measures, as scalp-recorded electrophysiological activity represents the synchronous 

activity of large cell assemblies, which is influenced by the extent of axonal myelination 
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(Bartzokis, 2003). If these cortico-basal ganglia networks do support preparatory shifts in 

threshold, structural integrity within these regions should be able to account for at least 

some of the relationship between the cue-locked ERP component and response threshold 

setting (Karayanidis et al., 2009). 

 

 

8.3 Methods 

 

8.3.1 Participants 

Twenty right-handed participants (12 females, 8 males) with mean age 25.35 years 

(SD = 4.8) had no prior exposure to the paradigm and gave written informed consent. 

Model parameters and fMRI data from these participants have previously been reported in 

Mansfield et al. (2011). For the current study, three participants were excluded due to large 

amounts of noise in the EEG or problems with the DWI acquisition resulting in a final 

sample of seventeen participants who had both ERP and DWI data.  

 

8.3.2 Stimuli and Tasks 

The paradigm was identical to that used by Karayanidis et al. (2009). A circle 

divided into six segments that were grouped into three major task segments (letter, digit, 

color) was presented continuously in the centre of the screen (see Figure 8.1a). Targets 

consisted of a pair of characters made up of combinations of letters, digits and non-

alphanumeric symbols (Figure 8.1b). The targets consisted of three dimensions – one 

relevant to the currently active task, one selected from one of the other tasks and 

incongruently mapped with the currently active task, and one dimension that was neutral 
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(i.e., not mapped to any response). So, for example, a letter mapped to a left hand response 

would be paired with a digit mapped to a right hand response and would be presented in 

grey. The same target could not appear on two successive trials.  

Each trial began with a cue, which was a highlight surrounding two adjacent 

segments of the circle (visual angle 5º). Four cue types (i.e., repeat, switch-to, switch-away 

and non-informative) were defined by cue location and were presented with equal 

probability in a pseudo-random sequence so that the same cue could not be repeated on 

more than three consecutive trials. Repeat cues highlighted the two task segments 

corresponding to the task performed on the previous trial, thus reliably predicting a repeat 

in task (Figure 8.1c). Switch-to cues highlighted two task segments associated with a task 

that had not been completed on the previous trial, reliably predicting a task switch, and 

defining the new task. Switch-away cues highlighted two task segments overlapping the 

two tasks not completed on the previous trial, reliably predicting a task switch, but not the 

task to be switched to. Hence, the task to be performed was defined when the target 

appeared. Non-informative cues highlighted two task segments overlapping the task 

performed on the previous trial, and a task that was not relevant on the previous trial. Thus, 

these cues specified that a switch or a repeat trial was equally likely. This cue type was 

designed to control for cue encoding processes in ERP waveforms and is excluded from the 

current analyses as, by definition, these cues do not provide any information that could 

contribute to preparatory threshold adjustment processes. Responses were made using the 

right and left shift keys. The cue-target interval was 1000 ms and the response-target 

interval was 1400 ms.  
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Figure 8.1: (A) The circular grid, including task-location mapping. (B) Trial sequence 
showing the cue followed by the target. (C) Sequence of two trials demonstrating the three 

cue types. 

 

 

8.3.4 Procedure 

Participants attended three sessions, with a maximum of 18 days between the first 

and last session. Task training included 768 trials in both session 1 and session 2. In session 

2, training was followed by fMRI testing (which included the DWI scan) and session 3 

consisted of ERP testing (10 blocks of 101 trials). Four participants completed ERP and 

fMRI/DWI sessions in reverse order.  Participants were instructed to perform the task as 

quickly and as accurately as possible, and speed (mean RT) and accuracy (% error) 

feedback was given at the end of each block of trials. Errors were followed by auditory 

feedback. 

 

8.3.5 Modeling of behavioral data  

The first five trials of each block, trials associated with an error or immediately 

following an error were excluded from the analysis, as were trials on which RT was faster 

than 200 ms or slower than 3 standard deviations above each participant’s mean RT. Model 
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parameters were estimated using the EZ2 diffusion model method (Grasman et al., 2009) 

separately for each participant and ERP and fMRI session. RT, error rates, and all model 

parameters replicated Karayanidis et al.’s (2009) substantive findings. Here, we report only 

response thresholds, as our hypotheses are specific to this parameter. The session type 

(ERP vs. fMRI) and session order did not produce any significant main effect or interaction 

in threshold estimates. We report threshold estimates from the ERP session for 

compatibility with ERP effects. 

Response threshold was analysed using a 3 (task: letter, digit, color) x 3 (cue type: 

repeat, switch-to, switch-away) repeated measures ANOVA. Although there was a 

significant main effect of task, there was no interaction between task and cue type, so all 

analyses were averaged over task. We examined differences between cue types using 

Bonferroni corrected planned comparisons between repeat and each of the switch cues.  

After confirming that threshold estimates were significantly correlated across cue 

type, participants were classified into a risky and a cautious group using a median split 

based on response threshold scores averaged across all cue types (one participant had the 

median score and was excluded). A 2 group (risky, cautious) x 3 cue type (repeat, switch-

to, switch-away) mixed factors ANOVA was run to confirm that cue type did not interact 

with the group factor. We also ran simple effects analyses to examine whether these groups 

displayed similar patterns of trial-by-trial shifts in response threshold. 

 

8.3.6 DWI acquisition and data analysis 

 

8.3.6.1 DWI acquisition parameters 
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DWI data were acquired using a Siemens Avanto 1.5 T whole-body MR scanner. 

DWI was performed using an optimized version of the Siemens diffusion tensor sequence 

(TR 8400 ms, TE 88 ms, FOV 250x250 mm
2
, acquisition matrix 104x104, 65 slices of 

2.4mm thickness without gap). The 65 images acquired at each location consisted of one 

low-diffusion-weighted (b=0) and 64 high diffusion-weighted images (b=1000s/mm
2
). The 

acquisition phase lasted 9.5 minutes. 

 

8.3.6.2 Whole brain analysis using TBSS   

DWI preprocessing and analysis were performed in FSL v4.1 (FMRIB’s Software 

Library, www.fmrib.ox.ac.uk/fsl). Measures of fractional anisotropy (FA) were first 

derived before the data was submitted to Tract-Based Spatial Statistics (TBSS; Smith et al., 

2006), a voxel-wise statistical analysis tool. FA indexes the relative directionality of 

diffusion of water molecules across tissue, with higher values indicating greater 

directionality of diffusion (known as anisotropic diffusion). Thus, in white matter, 

measurements of FA may be affected by properties such as axonal density, myelination, or 

compactness of tracts.  

Affine registration to a reference volume was first performed to correct for eddy 

currents and head movement. To create FA images, a tensor model was fit to the raw 

images using FMRIB’s Diffusion Toolbox (FDT). FA values close to 1 indicate the 

presence of anisotropic diffusion of water molecules, signifying the increased coherence of 

white matter tracts. Values approaching 0 indicate greater isotropic diffusion, which 

corresponds to a decrease in strength or coherence of white matter tracts. The resulting FA 

images were brain-extracted using FSL’s Brain Extraction Tool (BET; Smith, 2002), before 

each participant’s FA image was aligned to a common 1mm-space template using FMRIB’s 

http://www.fmrib.ox.ac.uk/fsl
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Non-linear Image Registration Tool (FNIRT; Andersson, 2007). The mean of all FA 

images was then computed and thinned to create the mean FA skeleton, which was 

composed of the centers of tracts common to the group.  

Each subject’s FA data were projected onto the skeleton and the resulting images 

were submitted to TBSS. Separate general linear models were set up using demeaned 

response threshold for each cue type as covariates. To further confirm the results of these 

correlations, we examined differences in FA between the risky and cautious groups using t-

tests. Correlations and group differences were tested at p<0.01, with a cluster-size threshold 

of 30 contiguous voxels (see Jänke et al., 2009).  

 

8.3.6.3 Tractography  

A post-hoc tractography analysis was performed to examine pathways associated 

with two striatal regions of interest (ROIs) that showed significant correlations with 

response threshold in the TBSS analysis. This technique allowed us to examine whether 

these regions form broader cortico-striatal networks responsible for threshold adjustment. 

More specifically, we examined qualitative differences between the networks associated 

with each of these striatal regions, as well as differences between the risky and cautious 

groups within these pathways. Fiber-tract estimation was performed using probabilistic 

tractography, based on a crossing-fiber model as implemented in bedpostX (FSL v4.1).  

The two striatal ROIs were used to create MNI-space masks, which were then 

registered into each participants’ native space. Tractography was performed using these 

masks as seed regions in probtrackX, with 5000 tract-following samples from each voxel, 

and a curvature threshold of 0.2. This analysis was carried out in each participant’s native 

space, with resulting tract-maps registered to standard space to enable cross-participant 
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comparisons. Individual participants’ tract maps were thresholded so that only tracts with at 

least 50 samples were kept. Thresholded maps were then binarized and added together 

within each group to produce separate group tract maps for risky and cautious groups. 

Hence, the value of a specific voxel within these maps indicates the number of participants 

who showed at least 50 tract samples passing through that voxel. The resulting group maps 

were further thresholded to only keep tracts that were present for at least two out of the 

eight participants in each group. As the results did not differ depending on whether the 

striatal ROIs were taken from the switch-to or the switch-away correlations, we display data 

from the switch-to correlations for compatibility with the following DWI/ERP/behavior 

analysis. 

 

8.3.7 EEG acquisition and data analysis 

 

8.3.7.1 EEG acquisition parameters  

EEG was continuously sampled at 2048 Hz/channel from two mastoid and 64 scalp 

electrodes relative to a common mode sense (CMS) electrode and a driven right leg (DRL) 

electrode using a Biosemi ActiveTwo system. Vertical electro-oculogram was recorded 

from the supra-orbital and infra-orbital ridges of each eye and horizontal electro-oculogram 

was recorded from the outer canthi of each eye. 

 

8.3.7.2 EEG data analysis  

EEG data were analysed using Brain Electrical Source Analysis (BESA v5.3) 

software. Scalp electrodes were re-referenced offline to linked mastoids. EOG artifact 

correction was applied using a regression algorithm (Ille et al., 2002). Cue-locked EEG 
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epochs were extracted from 300ms before cue onset to 200 ms after target onset, with a 

100ms baseline calculated from 50 ms pre- to 50 ms post-cue onset. Epochs with artifact 

exceeding a 100 µV threshold were rejected. Cue-locked waveforms were created for each 

cue type, averaged over response hand and task.  

Waveforms were visually inspected to determine the time window of maximal 

differentiation in cue-locked positivity amplitude across cue types. Mean amplitude over 

220-300 ms at a cluster of parieto-occipital electrodes (PO3, POz and PO4) was analyzed 

using a repeated measures ANOVA with three levels of cue type. Bonferroni corrected 

planned comparisons were carried out between each of the three cue types. 

 

8.3.8 DWI, ERP and behavior analysis 

Karayanidis et al. (2009) showed that the amplitude of the cue-locked positivity for 

switch-to trials was negatively correlated with threshold. We investigated whether this 

temporal information could be linked to spatial information about threshold adjustment, as 

indexed by our FA measures. More specifically, we examined whether the relationship 

between cue-locked positivity amplitude and demeaned response threshold was mediated 

by any of the white matter regions shown to significantly correlate with threshold. Such a 

mediating relationship would allow us to determine whether the preparatory strategy 

associated with threshold shifting (as indexed by the cue-locked positivity) was being 

driven by specific neural structures. 

Using our TBSS results, we focused on frontal and striatal regions that were 

significantly correlated with threshold, and that have previously been shown to form 

networks responsible for threshold shifting (e.g. Forstmann et al., 2008a; Mansfield et al., 

2011). Hence, we selected a region within the right external capsule in which FA showed a 
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negative correlation with threshold, and regions in the right IFG and right anterior limb of 

the internal capsule, in which FA was positively correlated with threshold. We also 

examined a pre-SMA region, which was negatively correlated with threshold for repeat 

trials, but did not reach the cluster threshold for switch-to trials. We first correlated FA 

from each of these regions with the cue-locked positivity for switch-to trials. Then, we 

examined whether the strength of the correlation between the cue-locked positivity 

amplitude and threshold was affected when partialling out FA within each of these regions. 

All correlations were two-tailed and type I error was controlled using Bonferroni 

correction. 

 

 

8.4 Results 

 

8.4.1 Response Threshold 

Response threshold differed significantly between cue types, F(2,32)=8.87, p=.003. 

Response threshold for repeat cues (M=0.161, SE=0.009) was significantly lower than for 

switch-to cues (M=0.189, SE=0.011), F(1,16)=15.73, p=.001, and marginally lower than for  

switch-away cues (M=0.179, SE=0.012), F(1,16)=4.95, p=.041.  

8.4.1.1 Median split analysis  

Response threshold estimates correlated strongly between all three cue types (repeat 

and switch-to, r=.79, p<.001; repeat and switch-away, r=.75, p=.001; switch-to and switch-

away, r=.94, p<.001). Thus we used a median split based on average response threshold to 

assign participants to a risky or a cautious group. The groups differed significantly in 
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response threshold, F(1,14)=25.23, p<.001: 0.142 and 0.21 for risky and cautious groups, 

respectively (Figure 8.2). However, importantly, there was no interaction between cue type 

and group, F(2,28)=1.92, p=.17. For both risky and cautious groups, response threshold for 

repeat cues was significantly lower than for switch-to cues, (risky: F(1,7)=16.57, p=.005; 

cautious: F(1,7)=11.65, p=.011), but not switch-away cues, (risky: p=.23; cautious: p=.14). 

Hence, despite being overall more risky or more cautious, participants showed similar trial-

by-trial threshold adjustment between cue types. 

 

 

Figure 8.2: Response threshold means (and standard errors) for cue type and group (risky vs. 

cautious). R = Repeat, ST = Switch To, SA = Switch Away. 

 

8.4.2 DWI analysis 

 

8.4.2.1 Whole brain analysis  

Using a whole brain analysis approach, white matter FA showed significant 

correlations with response threshold for each cue type (Table 8.1 and Figure 8.3a: negative 

correlations; Table 8.2 and Figure 8.3b: positive correlations). Regions in right pre-SMA 
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and right superior parietal lobule were negatively correlated with threshold for repeat trials. 

A region in right pre-SMA also correlated with response threshold for switch-to cues, 

however it did not reach the cluster-level threshold. The only region that negatively 

correlated with threshold for switch cues was in the external capsule, a region lateral to the 

putamen. A non-significant cluster in this region also correlated with threshold for repeat 

cues. Hence, white matter regions within pre-SMA and lateral to the putamen both showed 

increased integrity in individuals who set lower response thresholds (see Figure 8.3a). 

In contrast, a distributed network of white matter in frontal, striatal and posterior 

parietal regions correlated positively with threshold (see Table 8.2). Across all cue types, 

FA in right IFG correlated with threshold, whereas FA in left IFG correlated with threshold 

for switch cues only. Interestingly, a region between right caudate and putamen and within 

the anterior limb of the internal capsule positively correlated with threshold only for the 

switch cues (Figure 8.3b).  

 

Table 8.1: MNI co-ordinates and r-values for white matter (WM) regions that showed significant 

negative correlations with response threshold. All contrasts were thresholded at p<.01, and at least 
30 contiguous voxels. 
 

Region (BA) Left Hemisphere Right Hemisphere 

 MNI r MNI r 

Repeat    

WM region in dorsal pre-SMA - - 7, 15, 62 .69 

WM region in ventral superior 

parietal lobule 

- - 28, -50, 49 .78 

 

Switch-To  

    

External capsule - - 30, 12, 4 .73 

 

Switch-Away  

    

External capsule - - 29, 13, 4 .77 
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Figure 8.3: FA regions showing significant negative (A) and positive (B) correlations with 
demeaned response threshold. Regions (red-yellow) are thickened to aid visualization and overlaid 
on the mean FA skeleton (green-light green). As these regions showed a high degree of overlap 
across cue types, the displayed regions are taken from the switch-to correlations, for compatibility 
with subsequent DWI/ERP/behavior analyses. 
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Hence, the TBSS analysis produced two striatal regions that appear to show 

dissociable functions – a region in right external capsule in which increased FA was 

associated with more risky responding, and a region in the right anterior limb of the internal 

capsule in which increased FA was associated with more cautious responding. These 

regions significantly correlated with response threshold only for switch cues. However, 

both regions showed similar clusters for repeat cues that did not reach threshold. This 

pattern of effects suggests that white matter organization within distinct regions of the 

striatum may be responsible for lower threshold setting in more risky participants and 

higher threshold setting in more cautious participants, respectively. 

To examine the robustness of these effects within the striatum, we compared FA 

within these regions for risky and cautious groups. The external capsule showed 

significantly higher FA for the risky as compared to the cautious group (switch-to: t(14)=-

4.5, p<.001; switch-away: t(14)=-3.82, p=.002). However, FA in the anterior limb of the 

internal capsule did not differ significantly between cautious and risky groups (both p>.01). 
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Table 8.2: MNI co-ordinates and r-values for white matter (WM) regions that showed significant 
positive correlations with response threshold. All contrasts were thresholded at p<.01, and at least 

30 contiguous voxels. 
 
Region (BA) Left Hemisphere Right Hemisphere 

 MNI r MNI r 

Repeat    

Frontal     

WM region in posterior frontal orbital gyrus - - 18, 15, -18 .77 

WM region in ventral inferior frontal gyrus (pars triangularis) - - 48, 25, -2 .73 

WM region ventro-medial to middle frontal gyrus - - 28, 28, 21 .81 

Parietal     

WM region lateral to posterior cingulate -18, -54, 27 .83 14, -42, 21 .79 

WM region ventral to posterior cingulate - - 6, -31, 23 .72 

WM region lateral to precuneus -13, -61, 46 .80 24, -56, 28 .71 

Occipital     

WM region medial to lateral occipital gyrus (inferior division) - - 26, -90, 2 .80 

WM region ventro-medial to lateral occipital gyrus (superior 

division) 

- - 27, -65, 24 .78 

Cerebellar     

WM region adjacent to cerebellar tonsil - - 27, -47, -36  .75 

WM region adjacent to cerebellar pyramis -12, -70, -32 .88 17, -70, -30 .75 

 

Switch-To 

    

Frontal     

WM in dorsal frontal orbital cortex - - 17, 16, -17 .82 

WM in ventral inferior frontal gyrus (pars triangularis) - - 45, 27, 0 .90 

WM region medial to inferior frontal gyrus (pars opercularis) -33, 13, 23 .80 - - 

WM region posterior to insula -33, -26, 3 .75 - - 

WM region lateral to paracingulate gyrus - - 17, 8, 41 .67 

WM region in ventral superior frontal gyrus -10, 32, 45 .73 - - 

Parietal     

WM region anterior to precuneus -16, -52, 24 .86 19, -46, 20 .87 

WM region lateral to precuneus - - 27, -64, 24 .90 

WM region medial to parietal operculum -35, -36, 26 .70 - - 

WM region in ventral postcentral gyrus -38, -25, 42 .76 - - 

Subcortical     

Anterior limb of the internal capsule - - 17, 12, 2 .77 

Occipital     

WM region anterior to occipital fusiform gyrus -24, -79, 5 .69 - - 

WM region lateral to intracalcarine cortex - - 24, -79, 8 .72 
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WM region medial to lateral occipital gyrus (superior division) -22, -79, 17 .76 - - 

WM region in posterior cuneus -12, -85, 30 .75 - - 

Cerebellar     

WM region adjacent to cerebellar tonsil - - 31, -45, -38 .83 

 

Switch-Away 

    

Frontal     

WM region in anterior frontal orbital cortex - - 39, 36, -11 .74 

WM region in ventral inferior frontal gyrus (pars triangularis) - - 47, 25, 0 .86 

WM region medial to inferior frontal gyrus (pars opercularis) -33, 14, 22 .78 - - 

WM region lateral to anterior cingulate - - 17, 8, 41 .69 

WM region ventral to precentral gyrus - - 15, -17, 55 .74 

Parietal     

WM region anterior to precuneus -17, -53, 23 .91 - - 

WM region lateral to precuneus - - 28, -64, 18 .87 

WM region medial to parietal operculum -35, -37, 26 .73 - - 

WM ventral to postcentral gyrus -36, -25, 42 .69 - - 

Subcortical     

Anterior limb of the internal capsule - - 17, 11, 2 .79 

Occipital     

WM region ventral to lateral occipital gyrus (superior division) - - 24, -81, 7 .80 

WM region ventral to lateral cuneus -12, -85, 30 .75 - - 

Cerebellar     

WM region adjacent to cerebellar tonsil - - 32, -45, -38 .78 

 

 

8.4.2.2 Tractography 

To examine whether the above two striatal regions form separable networks 

responsible for threshold adjustment, we conducted probabilistic tractography using these 

regions as seed masks and compared results for the risky and cautious group (Figure 8.4a 

and b). Projections from right external capsule overlapped with anterior portions of the 

cortico-spinal tract, as well as posterior portions of the superior longitudinal fasciculus 

(Figure 8.4a). These projections innervated the right pre-SMA, right posterior parietal and 
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superior temporal regions, and were more extensive for the risky group (blue) than the 

cautious group (orange). 

In contrast, the anterior limb of the internal capsule was part of a pathway that 

largely overlapped with the anterior thalamic radiation, incorporating both right anterior 

prefrontal cortex (PFC) and IFG (Figure 8.4b). Although connections to anterior PFC were 

equally strong for risky and cautious groups, the cautious group showed increased 

connectivity within the right IFG. 

In summary, tractography analyses showed that the two striatal regions were part of 

distinct neural networks that varied in strength across risky and cautious groups. 

 

 

Figure 8.4: Probabilistic tractography analysis for (A) tracts originating from right external capsule 

seed. Left column shows significant tracts for the cautious (orange) group and right column shows 
significant tracts for the risky (blue) group, overlaid on the cautious group. (B) tracts originating 
from right anterior limb of the internal capsule seed. Left column shows significant tracts for the 
risky group and right column shows significant tracts for the cautious group, overlaid on the risky 
group.  

A B 
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8.4.3 ERP analysis 

Figure 8.5a shows cue locked waveforms at a parieto-occipital cluster of electrodes 

(PO3, POz, PO4), which showed the largest cue-locked positivity. Cue-locked waveforms 

showed an N2-like component which was followed by a prolonged positivity over 

approximately 200 to 650 ms and a later pre-target negativity. The timeframe and 

amplitude of these effects differed as a function of cue type. We examined the early portion 

of the cue-locked positivity (mean amplitude over 220-300 ms), which has been previously 

shown to correlate with threshold adjustment (Karayanidis et al., 2009). There was a 

significant main effect of cue type, F(2,32)=36.66, p<.001. Switch-to cues (M=4.86, 

SD=2.92) and switch-away cues (M=4.72, SD=3.38) showed a larger early cue positivity 

than repeat cues (M=0.49, SD=3.38; F(1,16)=66.2, p<.001; F(1,16)=35.79, p<.001, 

respectively), but did not differ from each other.  

 

8.4.4 DWI, ERP and behavior analysis 

Consistent with Karayanidis et al. (2009), a larger cue-locked positivity for switch-

to cues was associated with lower response threshold, r=-.47 (see Figure 8.5b), although the 

relationship was only marginally significant (p=.056). A larger cue-locked positivity was 

also associated with lower response threshold for repeat and switch-away cues, but these 

correlations did not reach significance.  

Figure 8.5c shows correlations between the cue-locked positivity amplitude and FA. 

After correction, there was a marginally significant positive correlation between the cue-

locked positivity and FA in the external capsule, r=.58, p=.02, while the pre-SMA showed 

a non-significant trend in the same direction (p=.1). In contrast, a marginally significant 

negative correlation was found between the cue-locked positivity and FA in the anterior 
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limb of the internal capsule, r=-.56, p=.02, but there was no relationship between positivity 

and FA in IFG (p>.3). Thus, a large cue-locked positivity was associated with higher FA in 

the external capsule, and lower FA in the anterior limb of the internal capsule. 

 

 

Figure 8.5: (A) Cue-locked ERP waveforms for repeat (grey), switch-to (black solid), and switch-
away (black dashed) trial types. Bold black bars show the 220-300 ms mean amplitude window. (B) 
Correlation between demeaned response threshold and mean amplitude of the cue-locked positivity 
for switch-to cues. (C) Correlation between mean amplitude of the cue-locked positivity for switch-
to cues and FA in the right external capsule (left) and right anterior limb of the internal capsule 
(right). 

 

 

We ran partial correlations to determine whether FA in any of these regions 

mediated the relationship between ERP amplitude and response threshold. When FA values 

from the frontal regions were entered as covariates, the relationship between cue-locked 

positivity amplitude and threshold was inconsistently either weakened (in the case of pre-



 186 

SMA, r=-.29, p=.28) or strengthened (in the case of IFG, r=-0.59, p=.02). However, the 

relationship between cue-locked positivity amplitude and threshold was completely 

eliminated when variability associated with FA in either the external capsule or the anterior 

limb of the internal capsule was partialled out (r=-0.09, p=.74; r=-0.08, p=.77, 

respectively). Hence, FA in striatal, but not frontal regions mediated the relationship 

between the preparatory ERP component and response threshold. 

 

 

8.5 Discussion 

Previous studies suggest that response threshold can be adjusted on a trial-by-trial 

basis depending on external cue information within a cued-trials task-switching paradigm 

(Karayanidis et al., 2009; Schmitz & Voss, 2012). However, the setting of response 

threshold may also depend on traits intrinsic to individual participants. That is, people may 

have an overall preference for more cautious or more risky decision-making, while at the 

same time making transient adjustments of response caution in response to incoming 

information from the environment. We examined whether trait differences can be explained 

by structural organization in the same cortico-basal ganglia networks that subserve trial-by-

trial response threshold adjustment. Additionally, we sought to determine whether these 

networks could explain individual differences in anticipatory control of response 

thresholds. The results revealed that white matter organisation in distinct fronto-striatal 

networks could account for individual differences in preference for high or low response 

threshold setting. In addition, white matter structure in striatal, but not frontal, regions 

accounted for individual differences in anticipatory threshold adjustment.  
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A median split analysis was used to produce risky and cautious participant groups 

that differed in overall response threshold but not in their ability to make trial-by-trial 

threshold adjustments in response to informative task cues. We used both correlational and 

group-based analyses to identify structural differences in white matter organisation of 

fronto-striatal networks associated with setting a more cautious or more risky response 

threshold.  

 

8.5.1 FA-response threshold relationships 

Whole-brain analysis using TBSS (Smith et al., 2006) produced multiple regions in 

which FA significantly correlated with response threshold for each cue type (Tables 8.1 and 

8.2). Response threshold was negatively correlated with FA in a white matter region in the 

pre-SMA for repeat cues and in the right external capsule of the striatum for both switch 

cue types. Thus, we found evidence that the fronto-striatal network that plays a role in 

decreasing response threshold in response to task instructions (e.g., Forstmann et al., 

2008a) also underlies the tendency to take an overall more risky approach to responding.  

In contrast to the very focused network shown to be associated with the tendency to 

set a low ‘risky’ response threshold, the tendency to set a high ‘cautious’ threshold was 

associated with increased FA in a more diffuse network incorporating orbital frontal, 

inferior frontal and medial parietal cortex. In addition, the medial part of the right striatum 

(anterior limb of the internal capsule) was associated with increased threshold setting for 

switch cues. The fact that setting a higher response threshold was associated with increased 

FA in this wider network of frontal, parietal and striatal regions suggests that this intrinsic 

tendency may be attributed to greater control signalling from cortical to basal ganglia 

regions. In particular, the right IFG has been strongly linked to inhibitory control (Aron et 
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al., 2003; 2004; Forstmann et al., 2008b), suggesting that the tendency to be more 

conservative may be related to greater inhibitory signalling from this region to the basal 

ganglia, which results in slowed motor output.  

Perhaps most intriguingly, our findings also showed a dissociation between two 

white matter regions within the striatum. The external capsule, a lateral region of the 

striatum, was associated with risky response threshold setting, whereas the anterior limb of 

the internal capsule, a medial region of the striatum, was associated with cautious response 

threshold setting. Probabilistic tractography analysis confirmed that these two regions were 

associated with distinct neural networks. Seeding the external capsule produced 

connections with the pre-SMA that were stronger for the risky group (see also Lehéricy et 

al., 2004). This supports the notion that participants who set a low response threshold have 

enhanced top-down signalling from the pre-SMA to the striatum, yielding a faster release of 

the basal ganglia from inhibition (Bogacz et al., 2010; Mink, 1996). In contrast, the anterior 

limb of the internal capsule produced connections with the anterior PFC and IFG within a 

network that corresponded closely to the anterior thalamic radiation. Connections to the 

IFG were stronger for the cautious group. This finding is consistent with the TBSS results 

and suggests that a preference for cautious responding is mediated by enhanced signalling 

from the right IFG to the basal ganglia, producing a slowing of motor output.  

In sum, not only were the external capsule and anterior limb of the internal capsule 

found to be part of distinct fronto-striatal networks, but also the strength of connectivity 

within these networks varied according to whether participants adopted a cautious or risky 

response strategy. 
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8.5.2 Networks underlying trial-by-trial threshold adjustment vs. overall threshold setting 

There were two noticeable discrepancies between our current and our previous 

findings that examined trial-by-trial threshold adjustments. Firstly, while Mansfield et al. 

(2011) showed that BOLD activation in a region between caudate and putamen was 

negatively related to response threshold, the current findings show that FA in the anterior 

limb of the internal capsule, which also lies between these two structures, was positively 

related to response threshold. This inconsistency highlights the complexity of striatal 

organisation (see Draganski et al., 2008) and suggests that the relationship between regions 

within the striatum and setting of response conservativeness is not straightforward. One 

possible reason for this discrepancy is that the cluster within the anterior limb of the 

internal capsule that was significant for the current study represented only a small, anterior 

segment of Mansfield et al.’s caudate-putamen junction (CPJ) mask. Hence, the effects 

observed in our previous study could have been driven by activation changes in another 

(perhaps more posterior) region between the caudate and putamen. These inconsistent 

findings may also be attributed to the nature of the measurements derived in each case – 

while BOLD represents changes in blood oxygenation in response to external events, FA is 

a static structural measure based on the diffusion properties of tissue. Therefore, the lack of 

a direct correspondence between these measures is not surprising, particularly given the 

complexity of brain structure-function relationships (see Damoiseaux & Greicius, 2009). 

These discrepant findings highlight the need for systematic analyses using high spatial-

resolution measurements to examine how sub-regions within the striatum are related to 

setting of response threshold.  

Second, based on Mansfield et al.’s (2011) finding that increased threshold setting 

in response to switch cues was associated with increased activation in the right STN, we 
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predicted an association between overall more cautious response threshold setting and 

white matter connectivity in the STN. However, TBSS analysis did not produce any 

significant correlations between threshold setting and FA within the vicinity of the STN, 

nor did we find evidence for stronger projections from the anterior limb of the internal 

capsule to the STN for the cautious group compared to the risky group. One possible 

explanation is that the right STN may be involved in dynamic trial-by-trial threshold 

changes based on cue information, but not in a more global preference for a cautious 

approach to responding. In contrast to this specialised role of the STN, the striatum appears 

to play a more general role in setting response threshold, responding dynamically to cue 

information to bring about threshold adjustments, while also determining the overall level 

of response caution.  

 

8.5.3 ERP-response threshold relationships mediated by FA 

A secondary aim of this study was to examine whether these fronto-striatal 

networks could explain individual differences in anticipatory control of threshold, that is, 

threshold adjustments that are carried out during the cue-target interval. Karayanidis et al. 

(2009) showed that a large cue-locked positivity for switch-to cues is associated with 

setting a low threshold, suggesting that response threshold is adjusted prior to target onset. 

In the current study, we combined DWI and ERP data to examine whether fronto-striatal 

regions underlie anticipatory control of response threshold.  

ERP data replicated the finding that cue-locked positivity amplitude for switch-to 

cues is negatively correlated with response threshold. We used an ROI approach to examine 

the structures which may explain this relationship, focusing on frontal and striatal white 

matter regions produced from the TBSS analysis that formed distinct networks associated 
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with threshold setting. Entering FA from either the external capsule or the anterior limb of 

the internal capsule as a covariate completely eliminated the relationship between the cue-

locked positivity and response threshold. In contrast, entering FA from the pre-SMA region 

or the IFG region as a covariate produced only small changes in this relationship. The fact 

that neither of the two frontal regions mediated the relationship between cue-locked 

positivity and response threshold suggests that anticipatory setting of response threshold 

may be related to structural integrity specifically within the striatum. This indicates that a 

crucial aspect of the ability to flexibly shift response threshold in anticipation of an easy or 

a difficult trial lies in the efficiency with which gating mechanisms within the striatum can 

be engaged, rather than the efficiency of signalling from cortical regions to the striatum. 

 

8.5.4 Conclusion 

The results of the current study suggest that individual differences in the overall 

setting of response thresholds can be explained by structural integrity in some of the same 

networks that are engaged for trial-by-trial threshold adjustments based on external cues. 

These findings extend our understanding of fronto-striatal involvement in setting response 

caution, suggesting that these networks have a general role in setting thresholds, whether 

this is in response to external cues or a result of intrinsic trait-related tendencies. In 

addition, by combining the spatial resolution of DWI data and the temporal resolution of 

ERP data, we added temporal information to existing neural models of response threshold 

adjustment, showing that preparatory control of threshold adjustment is linked to the 

striatum. Taken together, our findings show that the striatum is instrumental in both global 

setting of response thresholds and transient adjustment of thresholds on the basis of 

external cue information. 
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Chapter 9: General Discussion 

 

For decades now, there has been a great deal of interest in uncovering the 

processes underlying the switch cost - the decline in performance that occurs when 

switching to a different task compared to repeating the same task. Behavioral evidence has 

shown that multiple processes contribute to switch cost, including passive carry-over of 

interference, as well as active control processes that reconfigure the task-set (see Kiesel et 

al., 2010; Vandierendonck, Liefooghe & Verbruggen, 2010 for a review). It has also been 

shown that at least some of these active control processes can be completed proactively, in 

anticipation of target onset. However, it is still unclear whether preparation to switch tasks 

involves qualitatively distinct preparation compared to the more general task preparation 

required on all trials. The aim of this thesis was to examine the evidence for distinct switch-

related preparation processes and to define the nature of this preparation.  

We developed a task-switching paradigm that was designed to delineate distinct 

preparatory control processes. This paradigm represents a significant step forward from 

typical cued-trials task-switching paradigms that only include fully-informative switch and 

repeat cues. In these paradigms, switch cues signify not only a switch in task but also the 

upcoming task itself. Therefore, these paradigms do not allow us to differentiate between 

processes specifically elicited in preparation to switch task from more general preparation 

processes such as arousal or task expectancy processes, which we refer to below as task 

readiness. Our paradigm introduced partially informative switch cues, that is, cues that 

reliably predict a switch in task but do not specify the upcoming task. Hence, both fully-

informative switch-to cues and partly-informative switch-away cues validly predict a 

change in task, but only the former provide reliable information about the identity of the 
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new task. Therefore, this paradigm dissects proactive control processes occurring during 

the cue-target interval into readiness to switch (switch-to, switch-away), uploading of new 

task-set (switch-to) and task readiness (switch-to, repeat). This paradigm was modeled on 

earlier work by Nicholson et al. (2006b), but included a critical non-informative cue 

condition, that did not allow either switch preparation or task-readiness.  

We applied this paradigm in two studies using a select range of methodologies to 

define the spatial and temporal dynamics of these processes. These analyses revealed two 

switch-related preparation processes – one related to the signal to switch (which we refer to 

herein as switch-specific preparation, for simplicity) and another related to updating the 

task-set. Throughout the papers presented in this thesis, we examine switch-specific 

preparation from multiple perspectives in an attempt to define the nature of this process. 

Firstly, we used ERPs to examine whether this preparation could be temporally dissociated 

from more general task preparation and used formal cognitive modeling to examine 

whether switch-specific preparation is associated with a behavioural advantage 

(Karayanidis et al., 2009). We then used a novel multivariate pattern analysis of EEG data 

to examine whether these processes could be both temporally and spatially dissociated 

(Mansfield et al., 2012). The neural networks associated with this switch-specific 

preparation were examined using fMRI (Mansfield et al., 2011) and DWI (Mansfield et al., 

submitted). In addition, we combined these neuroimaging measures with parameters 

derived from formal cognitive modeling to make more specific inferences about the nature 

of this process (Karayanidis et al., 2009; Mansfield et al., 2011; submitted). This approach 

limits speculation about the relationship between patterns of neural activation and cognitive 

processes, as it attempts to first delineate the specific processes indexed in single end-state 

measures of performance (RT, accuracy) before linking these with neural activity. This 
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allows for a more fine-grained examination of the function of neural activity associated 

with switch-specific preparation. Using this approach we were able to provide the first 

evidence for qualitatively distinct switch-specific preparation that appears to be related to 

conflict control. 

 

 

9.1 Evidence in favour of switch-specific preparation 

The current findings present compelling evidence in support of models that posit 

qualitatively distinct switch-specific preparation (e.g. Rogers & Monsell, 1995; Rubinstein 

et al., 2001). In Karayanidis et al. (2009; Chapter 4), we used converging evidence from 

ERPs and latent measures derived from drift-diffusion modeling to find  support for switch-

specific preparation that is associated with a behavioural advantage. ERPs showed evidence 

for an early component (D-Pos1) that was elicited by cues that signalled a certain change in 

task (switch-to, switch-away), but not by cues that did not (non-informative cues). This 

provides evidence for a mechanism that is engaged when the cue reliably predicts an 

upcoming switch in task, regardless of whether the upcoming task is specified. We also 

found a later positivity (D-Pos2) for switch-to trials that appears consistent with previous 

switch positivities from traditional task-switching paradigms (e.g. Karayanidis et al., 2003; 

Nicholson et al., 2005) and is in line with a task-set updating or goal activation process 

when the cue reliably predicts the upcoming task. Therefore, we showed novel evidence for 

a temporal distinction between two components of switch preparation – an early component 

that is elicited specifically in response to the signal to switch (i.e., switch-specific 

preparation) and a later task-set updating component. Further, these switch-related 

preparation components were distinct from a later pre-target negativity that differed in 
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amplitude between cues that reliably predicated the upcoming task (repeat, switch-to) and 

those that did not (switch-away, non-informative) and therefore appeared to index task 

readiness. 

Interestingly, we did not find any RT advantage associated with switch-specific 

preparation. That is, switch-away cues (which defined an upcoming switch but not the task) 

did not differ in reaction time from non-informative cues (which did not define either a 

switch or the task). To understand the reasons for this discrepancy between ERP and 

behavioural data, we turned to formal models of cognition which define latent cognitive 

processes that characterize overt behavior. We selected the EZ2 diffusion model of two-

choice decision making, as this model estimates both decision and nondecision processes. 

The latter index the time taken by cue encoding and response selection processes, and in the 

context of task-switching, active control processes. Therefore, increased preparation within 

the C-T interval should correspond to a reduction in nondecision time as there is reduced 

need for post-target control processes. In support of this notion, we found that nondecision 

time was lowest for switch-to and repeat trials that both allow preparation for the upcoming 

task. Crucially, consistent with a switch-specific preparation process, we also found a 

nondecision time advantage for switch-away cues relative to non-informative cues that 

resulted in a switch trial. This indicates that some preparation had taken place on these 

partially-informative switch trials, leading to a behavioral advantage over cues that did not 

allow for any preparation for the switch in task. However, this advantage did not translate 

into an RT advantage because it was counteracted by the fact that response threshold was 

set higher for switch-away relative to non-informative switch trials, resulting in slower but 

less error-prone responses. That is, switch-away trials had faster nondecision time but 

higher response threshold than non-informative switch trials, resulting in no net RT benefit 
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associated with foreknowledge of a switch in task. This study represents the first attempt to 

identify the underlying processes involved in task-switching using a model of two-choice 

decision making. This formal cognitive modeling provided important evidence that helped 

clarify apparent contradictions between behavioral and ERP effects, and provided the 

crucial evidence showing that foreknowledge of a task switch is associated with some 

behavioural advantage. 

In Mansfield, Karayanidis and Cohen (2012; Chapter 5), we sought converging 

evidence that early switch-specific preparation for switch-to and switch-away trials could 

be differentiated from later task readiness for switch-to and repeat trials using a novel 

multivariate pattern analysis of frequency-specific topographical patterns in EEG activity. 

This analysis provides an independent data-driven confirmation of these two preparation 

processes by targeting commonalities in topographical patterns across the different cue 

conditions to reveal core underlying processes. This was achieved by training a classifier to 

differentiate between switch-to cues (that inform of upcoming switch trial and task identity) 

and non-informative cues (that do not provide either type of information). The classifier 

was then forced to misclassify switch-away cues (that inform only of upcoming switch) and 

repeat cues (that inform only of upcoming task) using the same model. This produced 

evidence for two processes: one for cue types that reliably predicted an upcoming task 

switch (switch-to and switch-away) and the other for cue types that reliably identified the 

upcoming task (repeat and switch-to). Specifically, alpha-band activity for cues that 

reliably predicted an upcoming switch was similar over right IFC early in the cue-target 

interval. This is consistent with the ERP evidence for early switch-specific preparation 

common to both switch-to and switch-away trials. Moreover, this finding represents the 

first evidence that preparation to switch is associated with a frontal source. In contrast, 
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consistent with a later task readiness process, cues that identified the upcoming task showed 

similar patterns of activity late in the C-T interval over PPC. Therefore, these 

misclassifications provided crucial evidence that a switch-specific process could be 

distinguished not only temporally, but also spatially from general task readiness.  

Taken together, these findings indicate that switch-specific preparation can be 

both temporally and spatially distinguished from later general task readiness processes. In 

addition, these findings further inform our understanding of the nature of switch-specific 

preparation. The fact that switch-specific preparation is elicited even when the upcoming 

task is not specified, suggests that this preparation cannot be associated with retrieval of the 

now-relevant task set. Instead, we speculated that this component is consistent with 

suppression of the previous-task set, which would ensure that the rules associated with the 

now-irrelevant task-set do not interfere with upcoming performance of the relevant task 

(see Rubinstein et al., 2001). The multivariate pattern classification analysis provided 

converging evidence consistent with this argument, showing that the common activation for 

switch-to and switch-away cues was associated with activation over right inferior frontal 

cortex, a region previously associated with response inhibition (e.g. Aron et al., 2004 for a 

review). However, it is important to note that these inferences are still quite indirect, as 

there is no way of directly measuring cognitive inhibition. Hence, the interpretation that 

this cue-locked early switch positivity reflects inhibition of the now irrelevant task-set 

remains speculative and the process by which such inhibition may be implemented remains 

undefined.  

As discussed above, we showed that formal cognitive modeling provided the 

crucial evidence that foreknowledge of a switch in task provided a behavioural advantage 

over not having foreknowledge that the task would switch. In addition, the diffusion model 
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analysis allowed us to more directly measure the specific cognitive processes that 

contributed to switch cost. This approach provided an alternative explanation regarding the 

nature of switch-specific preparation. Specifically, we showed that response threshold (an 

index of response caution) is adjusted on a trial-by-trial basis depending on whether the cue 

provides certainty of an easy repeat trial, or certainty of a more difficult switch trial. 

Specifically, response threshold was set higher when the cue predicted with certainty a 

switch in task (i.e., switch-to and switch-away cues) relative to when the cue predicted a 

repeat in task, or was equally likely to result in a switch or repeat trial (ie., non-

informative). Therefore, when participants were informed in advance that the previously 

relevant task-set would no longer be relevant, they shifted their response threshold up so as 

to allow for more careful responding. These findings present the first evidence that changes 

in response threshold contribute to performance decrements for switch relative to repeat 

trials. 

Two pieces of evidence support the suggestion that threshold adjustment is 

carried out in a preparatory manner within the C-T interval. One piece of evidence comes 

from the finding that response threshold, although set higher for informative (switch-to) and 

partially informative switch cues (switch-away) relative to informative repeat cues, did not 

differ between non-informative cues leading to a repeat or a switch trial. If response 

threshold adjustment occurs following target onset, then we would have expected a higher 

response threshold for non-informative switch relative to non-informative repeat trials. The 

fact that response threshold adjustment did not differ between these two trial types suggests 

that it was set prior to the onset of the target that revealed whether the task would switch or 

repeat. The other piece of evidence comes from the finding that the amplitude of the cue-

locked switch positivity was correlated with threshold setting on switch-to trials, suggesting 
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that threshold setting was carried out within the C-T interval. Therefore, these findings 

indicate that not only is response threshold adjusted on a trial-by-trial basis, but that this 

adjustment is carried out as part of advance preparation. These findings suggest an 

alternative explanation for the switch-specific component of preparation – that it may be 

related to threshold control rather than an inhibitory process.  

In a recent study, Schmitz and Voss (2012) found further support for preparatory 

changes in response caution contributing to switch costs. For one group, an advance cue 

validly predicted a task switch or task repeat (predictable transition group; CTI 600ms), 

while for another group the task cue appeared simultaneously with the target (unpredictable 

transition group). Consistent with our findings, the former set a higher threshold for switch 

than repeat trials. However, interestingly, the latter group set response caution equally high 

for both switch and repeat trials. As response threshold only showed a difference between 

switch and repeat trials when the upcoming task transition was predictable, this provides 

further support for the notion that response threshold can be adjusted preemptively based 

on cue information.  

In sum, the first two experimental chapters provide evidence in support of two 

distinct switch preparation processes – one that is specifically elicited in response to the cue 

to switch and another that is elicited when the upcoming task is additionally specified. The 

early switch-specific preparation was shown to be spatially and temporally distinct from 

later task-set updating and task-readiness processes. The conditions under which such 

switch-specific preparation is elicited led us to speculate that this process may reflect 

inhibition of the now-irrelevant task set.  However, formal cognitive modeling allowed us 

to relate this preparation to switch task with preemptive adjustment of response threshold in 

anticipation of a more difficult switch trial.  
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9.2 Neural basis of switch-specific preparation 

We proceeded to further characterize the nature of this process by examining the 

neural correlates of trial-by-trial adjustment in response threshold. Guided by neural models 

of speed-accuracy tradeoff, we first investigated whether threshold adjustments on switch 

and repeat trials are associated with fMRI activation in distinct neural networks (Mansfield 

et al., 2011; Chapter 7). We then examined whether these networks are in fact related to 

preparatory adjustment of response threshold (Mansfield et al., submitted; Chapter 8). 

So far fMRI studies of task-switching have been unable to provide unambiguous 

evidence for switch-specific preparation. Using a model-based approach, we were able to 

link brain activation to a distinct switch-specific process – an increase in threshold setting – 

and show that this pattern of activation was distinct from patterns of activation associated 

with decreasing response threshold on repeat trials. Specifically, we showed that increased 

activation in right STN was associated with setting a higher response threshold on switch 

trials (Mansfield et al., 2011; Chapter 7). In contrast, greater activation in the medial 

striatum was associated with setting a lower response threshold on repeat trials. Therefore, 

we found evidence that activation in distinct basal ganglia regions is associated with setting 

a higher response threshold for more difficult switch trials and setting a lower response 

threshold for easier repeat trials, respectively.  

The STN has been previously related to response inhibition (Aron & Poldrack, 

2006) as well as conflict-induced slowing (Aron et al., 2007). In addition, Aron et al. 

(2007) found that this region forms part of a broader network incorporating pre-SMA and 

IFC that is associated with the efficiency of slowing under response conflict. According to 

this account, frontal regions send input to the STN to stop or temporarily slow the output of 
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the basal ganglia. We found that STN activation was associated with an increase in 

response threshold, suggesting that this process may rely on the same or similar conflict-

control mechanisms to those engaged for response inhibition and conflict-induced slowing. 

Therefore, the switch-specific preparatory increase in response threshold appears to be 

closely related to other conflict control mechanisms that are employed to stop or slow 

response output.  

This ROI analysis did not include the right IFC, one of the regions hypothesised 

to provide input to the STN under conditions of increased conflict. However, EEG 

topographical pattern analysis produced evidence for a right IFC source associated with 

switch-specific preparation (i.e., differentiating between cues that provide switch certainty 

and those that do not). Future work is needed to examine whether this activation is 

specifically related to adjustment of response threshold. Therefore, while we have shown 

evidence for both right IFC and STN involvement in switch-specific preparation, our 

findings do not provide unequivocal evidence that these components of the response 

inhibition network work together to increase response threshold. Whole brain analyses or 

ROI analyses targeting both the IFC and STN regions may assist in further clarifying the 

role of these regions in switch-specific preparation.  

Also, interestingly, pre-SMA, which has been shown to form part of the network 

responsible for response inhibition, did not appear to be involved in switch-specific 

preparation. Instead, increased pre-SMA activation was associated with lower response 

threshold for both switch and repeat trials, suggesting that is involved in individual 

differences in overall threshold control. While previous evidence suggests that dorsomedial 

prefrontal regions play a prominent role in initiating control processes under decision 

conflict and uncertainty (e.g. Ridderinkhof et al., 2004), there is also some evidence to 
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suggest that this region is involved in the activation of action-sets (Cunnington et al., 2005; 

Rushworth, Walton, Kennerley & Bannerman, 2004). Therefore, it is possible that this 

region plays a more general role in cognitive control that changes depending on the current 

task context.  

Our finding that a network previously shown to be associated with conflict-

induced slowing is also activated on switch trials is compatible with Brown, Reynolds and 

Braver’s (2007) computational model of conflict-control in task-switching. According to 

this model, different control loops are engaged depending on the type of conflict 

encountered. In particular, our findings support Brown et al.’s change control loop that is 

engaged for conflict arising at the level of task-sets. According to their model, this loop 

biases responding towards accuracy (over speed) and exploitation (over exploration), with 

the net effect of this control process being a ‘braking’ of response output. However, while 

Brown et al. argued that the change control loop is engaged when a new task-set becomes 

coactivated with a previous task set, we found that this type of control is engaged even 

when the cue does not identify the upcoming task (i.e., on switch-away trials). Therefore, 

this suggests that conflict between an upcoming task and a now-irrelevant task is not a 

necessary condition for change detection to be engaged and the system to be prepared to 

reduce conflict.  

However, our findings from Mansfield et al. (submitted) question the role of this 

network in preparatory threshold adjustment. Specifically, we showed that structural 

integrity within the right striatum, rather than the STN, mediated the relationship between 

the amplitude of the cue-locked switch positivity and response threshold for switch-to trials. 

This suggests that the right striatum may be more directly associated with preparing the 

system to for change. Moreover, it is important to note that fMRI data cannot 



 203 

unambiguously disentangle cue-related from target-related processing, and therefore the 

conclusion that the relationship between STN activation and threshold setting is temporally 

situated within the cue-target interval needs to be considered with caution. Further work is 

required to understand whether the STN pathway that has been previously been linked to 

response inhibition and conflict-induced slowing is also activated proactively in 

anticipation of conflict on switch trials. 

In sum, using a model-based neuroscience approach, we have moved beyond 

simple identification of switch-specific preparation and developed some plausible 

hypotheses about what this preparation might entail. Specifically, we show that preparation 

for a switch in task is related with an increase in response threshold and that this is 

associated with the early switch positivity, suggesting that threshold regulation occurs in an 

anticipatory manner. Further, we showed that threshold adjustment on switch trials engages 

a cortico-basal ganglia network that has previously been linked to conflict control and that 

is distinct from another cortico-basal ganglia network engaged on repeat trials. Therefore, 

by pinpointing a specific control process that can explain switch cost and relating this to a 

specific pattern of neural activation, we were able to provide a new perspective on the 

nature of processes involved in preparation to switch task. This conceptualization of 

switch-specific preparation moves away from the notion of ‘reconfiguration’ of task-set and 

instead suggests that at least one part of preparation to switch tasks involves readying the 

system to deal with upcoming conflict. 
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9.3 Implications for neural models of response threshold adjustment 

Our findings are consistent with neural models of the speed-accuracy tradeoff in 

two-choice decision-making, suggesting that the threshold adjustment in task-switching 

closely parallels that carried out in simpler two-choice decision making. Further, these 

findings inform the debate about the level of the cortico-basal ganglia-thalamic network at 

which the speed-accuracy tradeoff is controlled (see Chapter 6 for a review). According to 

the striatal theory, under conditions that are less risky, the striatum receives top-down input 

from the pre-SMA so that the output nuclei of the basal ganglia can be released from 

inhibition (Forstmann et al., 2008a). In Mansfield et al. (2011; Chapter 7), we found that 

the pre-SMA/striatal network showed increased activation under low-risk conditions and 

for individuals who were more risky responders. Further, in Mansfield et al. (submitted; 

Chapter 8), we showed that the relationship between the amplitude of the cue-locked switch 

positivity and response threshold estimates was mediated by structural integrity within the 

striatum. These findings support the theory that the striatum plays a pivotal role in adjusting 

response threshold according to cue information. 

We also found some evidence that the striatal theory may account for individual 

differences in preference for an overall more risky response strategy. In Mansfield et al. 

(submitted; Chapter 8), we showed that individuals who set lower threshold across all 

conditions showed increased structural integrity within a network incorporating the pre-

SMA and external capsule of the striatum. In contrast, individuals who set overall higher 

thresholds showed increased structural integrity in a network incorporating the anterior 

limb of the internal capsule – another striatal region. These findings suggest that while the 

striatal theory provides a plausible account of neural control of response threshold 

adjustment in response to external information, more complex models may be required to 
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account for individual differences in preference for a more risky or more cautious response 

strategy.  

The STN theory (see Chapter 6) suggests that, under conditions associated with 

increased risk, the STN is activated to slow the output of the basal ganglia (e.g. Frank et al., 

2007). Our findings from Mansfield et al. (2011; Chapter 7) are compatible with this, as we 

found that the right STN showed increased activation for individuals who were more 

cautious in response to switch cues. This finding is novel, as previous studies of response 

threshold control (e.g. Forstmann et al., 2008a; Forstmann et al., 2010a) did not show an 

association between threshold setting and activation or structural integrity within this 

region. However, in Mansfield et al. (submitted; Chapter 8) we did not find evidence that 

structural integrity within the STN was associated with setting an overall higher response 

threshold. Therefore, like the striatal theory, the STN theory may be able to explain trial-

by-trial threshold adjustment, but may not account for individual differences in overall 

threshold setting.  

Alternatively, the discrepancies between the networks associated with trial-by-

trial threshold adjustment and those associated with individual differences in preference for 

an overall more risky or cautious response strategy may have arisen from the fact that we 

used different methodologies and different analysis strategies to investigate each type of 

threshold control. Specifically, trial-by-trial adjustment was analysed using an fMRI ROI 

approach, while overall threshold setting was analysed using DWI and a combined whole-

brain and ROI approach. Perhaps if a whole brain analysis had been used in our fMRI study 

then this may have provided a more comprehensive picture of the neural basis of threshold 

control. Conversely, the use of a whole-brain approach in the DWI analysis combined with 

a relatively small sample size may have resulted in a lack of sensitivity to detect effects in 
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smaller structures such as the STN. Therefore, the difference in neural mechanisms 

supporting trial-by-trial threshold control and overall threshold setting need to be further 

clarified using a more systematic comparison of these two types of threshold control using 

a common analysis approach. 

It is also pertinent to point out the limitations of using measures such as fMRI to 

delineate the neural mechanisms associated with transient control processes such as 

threshold adjustment. In particular, the temporal resolution of fMRI makes it difficult to 

determine how components of the observed networks interact to control the speed-accuracy 

tradeoff. Moreover, recent evidence using single-unit recordings during a visual search task 

in primates challenges the notion that the speed-accuracy tradeoff is mediated by the 

distance from baseline to threshold. For example, Heitz and Schall (2012) showed that 

integrated activity in movement neurons immediately prior to movement initiation did not 

differ between speed and accuracy instructions, suggesting that this integration terminates 

at a fixed threshold. Furthermore, firing rate excursion was larger under instructions to be 

fast compared to instructions to be accurate. In summary, there remain inconsistencies 

between neural mechanisms of speed-accuracy tradeoff and evidence accumulation model 

accounts of this process, suggesting that further work is required to reconcile behavioural 

and neural data. 

 

 

9.4 Implications for understanding the organization and temporal characteristics of 

cognitive control processes 

Our understanding of the organization and nature of cognitive control processes 

has come a long way since initial formulations of a single ‘homuncular’ control centre that 
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somehow orchestrates all goal-directed behaviour. We now know that such a 

conceptualisation is far too simple, as many studies have shown evidence that cognitive 

control processes can be fractionated into distinct components (Lehto, 1996; Stuss & 

Alexander, 2000; Stuss et al., 2002). Even so, factor analysis approaches have shown that 

while separate cognitive control processes can be distinguished, there is still some degree of 

commonality across these different functions (Miyake et al., 2000). Recent modeling work 

has also begun to focus on the temporal characteristics of cognitive control processes, in 

particular focusing on differentiating between cognitive control strategies that can be 

carried out proactively vs. reactively (e.g. Braver et al., 2007). The paradigm used in this 

thesis allowed the examination of component processes of proactive and reactive control in 

task-switching, further informing models of the organization and temporal ordering of 

cognitive control. 

Taking task-switching as our control process of interest, we have presented 

convincing evidence that a conflict control process involving an increase in response 

caution ensures efficient transition to a new task-set. The fact that we found evidence that 

this process was associated with similar neural regions to those engaged in paradigms 

requiring inhibition of prepotent responses suggests that there may be a common conflict 

control mechanism underlying many cognitive control functions. By using strategies to 

reduce conflict one can ensure that the potential for interference from irrelevant task goals 

on the current task goal is reduced. This ability appears particularly important when faced 

with the high degree of complexity and competing demands inherent in our everyday 

environment. Future research may examine the extent to which this adjustment of response 

caution is exclusive to conflict control in the task-switching paradigm, or whether its role 

extends to other cognitive control functions. 
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These findings also support and extend on models of the temporal organization 

of cognitive control processes (e.g., Braver et al., 2007). Using a paradigm that included 

cues of varying information value, we were able to show the conditions under which 

cognitive control can be carried out proactively. When cues were fully informative about 

the task transition (i.e., switch or repeat) as well as the identity of the upcoming task, we 

found strong evidence for the engagement of proactive control processes. However, we also 

found evidence for the engagement of proactive control even when the cue did not provide 

all of the information required to complete the upcoming task. In particular, reduced 

nondecision time for switch-away relative to non-informative switch trials suggests that 

participants engaged in at least some preparation even when they did not know what the 

upcoming task would be. Therefore, providing only some information about the upcoming 

target appears sufficient to elicit proactive control strategies. This finding suggests that 

participants are biased to adopt more proactive control strategies given any opportunity for 

advance preparation. Given this, future studies may further explore the minimum 

information required to elicit this bias towards proactive control. 

Braver et al. (2007) also predicted that proactive control would be associated 

with a distinct pattern of neural activation. Specifically, it was argued that proactive control 

should be associated with sustained activity in the IFC, indexing the sustained activation 

and maintenance of task goals. The current findings extend on this model, showing that 

proactive control may involve more than just the maintenance of the task goal within the 

preparation interval. In fact, it appears that, depending on task parameters, proactive control 

can be comprised of multiple components. For example, providing foreknowledge that the 

task will switch invokes strategies to deal with upcoming conflict. If the cue additionally 

specifies the upcoming task, this allows for task-related preparation processes related to 
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task-set updating (switch trials) or task readiness (both switch and repeat trials). These 

components of proactive control appear to be supported by complex neural networks 

involving a broad range of fronto-parietal and fronto-striatal regions. Further research is 

required to clarify the extent to which these networks are engaged across other paradigms 

designed to target proactive cognitive control.  

 

 

9.5 Future directions and final comments 

The goal of this thesis was to examine whether switch-specific preparation 

processes could be distinguished from general task preparation processes. Further, we 

aimed to understand the nature of switch-specific preparation. We used a paradigm that was 

designed to isolate specific control processes, along with a multi-modal approach 

combining evidence from cognitive modeling, electrophysiological, haemodynamic and 

structural measures. Cognitive modeling allowed for the nature of underlying processes to 

be defined with greater specificity, while neuroimaging modalities were able to uncover the 

spatial and temporal characteristics of these processes. Therefore, as each of these 

methodologies contributes unique information to model building, this approach allows for 

the development of more comprehensive and fine-grained models of cognitive control in 

task-switching.  

In particular, the studies in the current thesis highlight the value of using 

techniques that go beyond traditional measures of behavioural and neuroimaging data, and 

delve deeper into the underlying core processes that may be contributing to observable 

effects. For example, our novel multivariate pattern classification approach identified 

common EEG topographical patterns across conditions that indicated the existence of core 
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underlying processes. We were also able to extract the underlying process contributing to 

observable behavioural performance using evidence accumulation modeling. When 

combined with a paradigm that is designed to isolate specific control processes, these 

approaches represent a powerful way of extracting the core processes that underlie task-

switching performance measures. Given the almost 20-year-long debate over the nature of 

cognitive control processes engaged on switch trials, these approaches appear to offer a 

great deal of promise in resolving ambiguity over what the switching process entails. 

I expect that the findings presented in this thesis will stimulate further research 

into how the brain flexibly deals with an increasingly stimulating and demanding everyday 

environment. The complexity of higher-order cognitive control processes makes work in 

this area challenging but exciting, as we continue to build an understanding of the ways in 

which the brain allows us to function in our day-to-day lives. With creative approaches to 

targeting specific processes, as well as the rapid development of sophisticated and 

innovative analysis methods, I look forward to seeing just how far we can go in uncovering 

the intricacies of cognitive control. 
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